Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the worst case: Distortion in impartial culture electorates (2307.07350v4)

Published 14 Jul 2023 in cs.GT and cs.DS

Abstract: {\em Distortion} is a well-established notion for quantifying the loss of social welfare that may occur in voting. As voting rules take as input only ordinal information, they are essentially forced to neglect the exact values the agents have for the alternatives. Thus, in worst-case electorates, voting rules may return low social welfare alternatives and have high distortion. Accompanying voting rules with a small number of cardinal queries per agent may reduce distortion considerably. To explore distortion beyond worst-case conditions, we use a simple stochastic model according to which the values the agents have for the alternatives are drawn independently from a common probability distribution. This gives rise to so-called {\em impartial culture electorates}. We refine the definition of distortion so that it is suitable for this stochastic setting and show that, rather surprisingly, all voting rules have high distortion {\em on average}. On the positive side, for the fundamental case where the agents have random {\em binary} values for the alternatives, we present a mechanism that achieves approximately optimal average distortion by making a {\em single} cardinal query per agent. This enables us to obtain slightly suboptimal average distortion bounds for general distributions using a simple randomized mechanism that makes one query per agent. We complement these results by presenting new tradeoffs between the distortion and the number of queries per agent in the traditional worst-case setting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.