Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Completion via Leverage Sampling and Tensor QR Decomposition for Network Latency Estimation (2307.06848v1)

Published 27 Jun 2023 in cs.NI, cs.LG, cs.NA, and math.NA

Abstract: In this paper, we consider the network latency estimation, which has been an important metric for network performance. However, a large scale of network latency estimation requires a lot of computing time. Therefore, we propose a new method that is much faster and maintains high accuracy. The data structure of network nodes can form a matrix, and the tensor model can be formed by introducing the time dimension. Thus, the entire problem can be be summarized as a tensor completion problem. The main idea of our method is improving the tensor leverage sampling strategy and introduce tensor QR decomposition into tensor completion. To achieve faster tensor leverage sampling, we replace tensor singular decomposition (t-SVD) with tensor CSVD-QR to appoximate t-SVD. To achieve faster completion for incomplete tensor, we use the tensor $L_{2,1}$-norm rather than traditional tensor nuclear norm. Furthermore, we introduce tensor QR decomposition into alternating direction method of multipliers (ADMM) framework. Numerical experiments witness that our method is faster than state-of-art algorithms with satisfactory accuracy.

Summary

We haven't generated a summary for this paper yet.