Experimental Investigation of Geometric Quantum Speed Limits in an Open Quantum System (2307.06558v3)
Abstract: We studied geometric quantum speed limits (QSL) of a qubit subject to decoherence in an ensemble of chloroform molecules in a Nuclear Magnetic Resonance experiment. The QSL is a fundamental lower bound on the evolution time for quantum systems undergoing general physical processes. To do so, we controlled the system-reservoir interaction and the spin relaxation rates by adding a paramagnetic salt, which allowed us to observe both Markovian and non-Markovian open system dynamics for the qubit. We used two distinguishability measures of quantum states to assess the speed of the qubit evolution: the quantum Fisher information (QFI) and Wigner-Yanase skew information (WY). For non-Markovian dynamics and low salt concentrations, we observed crossovers between QSLs related to the QFI and WY metrics. The WY metric sets the tighter QSL for high concentrations and Markovian dynamics. We also show that QSLs are sensitive even to small fluctuations in spin magnetization.
- Y. Aharonov and D. Bohm, “Time in the Quantum Theory and the Uncertainty Relation for Time and Energy,” Phys. Rev. 122, 1649 (1961).
- P. Pfeifer and J. Fröhlich, “Generalized time-energy uncertainty relations and bounds on lifetimes of resonances,” Rev. Mod. Phys. 67, 759 (1995).
- L. Mandelstam and I. Tamm, “The uncertainty relation between energy and time in non-relativistic quantum mechanics,” in Selected Papers, edited by B. M. Bolotovskii, V. Y. Frenkel, and R. Peierls (Springer, Berlin, Heidelberg, 1991) pp. 115–123.
- N. Margolus and L. B. Levitin, “The maximum speed of dynamical evolution,” Physica D 120, 188 (1998).
- M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, “Quantum speed limit for physical processes,” Phys. Rev. Lett. 110, 050402 (2013).
- A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, “Quantum speed limits in open system dynamics,” Phys. Rev. Lett. 110, 050403 (2013).
- S. Deffner and E. Lutz, “Quantum Speed Limit for Non-Markovian Dynamics,” Phys. Rev. Lett. 111, 010402 (2013).
- M. Okuyama and M. Ohzeki, “Quantum Speed Limit is Not Quantum,” Phys. Rev. Lett. 120, 070402 (2018).
- F. Campaioli, F. A. Pollock, and K. Modi, “Tight, robust, and feasible quantum speed limits for open dynamics,” Quantum 3, 168 (2019).
- E. O’Connor, G. Guarnieri, and S. Campbell, “Action quantum speed limits,” Phys. Rev. A 103, 022210 (2021).
- L. Lokutsievskiy and A. Pechen, “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls,” J. Phys. A: Math. Theor. 54, 395304 (2021).
- F. Impens, F. M. D’Angelis, F. A. Pinheiro, and D. Guéry-Odelin, “Time scaling and quantum speed limit in non-Hermitian Hamiltonians,” Phys. Rev. A 104, 052620 (2021).
- B. Mohan, S. Das, and A. K. Pati, “Quantum speed limits for information and coherence,” New J. Phys. 24, 065003 (2022).
- F. Campaioli, C.-S. Yu, F. A. Pollock, and K. Modi, “Resource speed limits: Maximal rate of resource variation,” New J. Phys. 24, 065001 (2022).
- D. P. Pires, “Unified entropies and quantum speed limits for nonunitary dynamics,” Phys. Rev. A 106, 012403 (2022).
- G. Ness, A. Alberti, and Y. Sagi, “Quantum Speed Limit for States with a Bounded Energy Spectrum,” Phys. Rev. Lett. 129, 140403 (2022).
- T. Fogarty, S. Deffner, T. Busch, and S. Campbell, “Orthogonality Catastrophe as a Consequence of the Quantum Speed Limit,” Phys. Rev. Lett. 124, 110601 (2020).
- Y. Shao, B. Liu, M. Zhang, H. Yuan, and J. Liu, “Operational definition of a quantum speed limit,” Phys. Rev. Research 2, 023299 (2020).
- R. Puebla, S. Deffner, and S. Campbell, “Kibble-Zurek scaling in quantum speed limits for shortcuts to adiabaticity,” Phys. Rev. Research 2, 032020 (2020).
- K. Kobayashi and N. Yamamoto, “Quantum speed limit for robust state characterization and engineering,” Phys. Rev. A 102, 042606 (2020).
- M. R. Lam, N. Peter, T. Groh, W. Alt, C. Robens, D. Meschede, A. Negretti, S. Montangero, T. Calarco, and A. Alberti, “Demonstration of Quantum Brachistochrones between Distant States of an Atom,” Phys. Rev. X 11, 011035 (2021).
- A. del Campo, “Probing Quantum Speed Limits with Ultracold Gases,” Phys. Rev. Lett. 126, 180603 (2021).
- B. Mohan and A. K. Pati, “Reverse quantum speed limit: How slowly a quantum battery can discharge,” Phys. Rev. A 104, 042209 (2021).
- D. P. Pires, K. Modi, and L. C. Céleri, “Bounding generalized relative entropies: Nonasymptotic quantum speed limits,” Phys. Rev. E 103, 032105 (2021).
- D. P. Pires and T. R. de Oliveira, “Relative purity, speed of fluctuations, and bounds on equilibration times,” Phys. Rev. A 104, 052223 (2021).
- E. Aghion and J. R. Green, “Thermodynamic speed limits for mechanical work,” J. Phys. A: Math. Theor. 56, 05LT01 (2023).
- Y. Hasegawa, “Unifying speed limit, thermodynamic uncertainty relation and Heisenberg principle via bulk-boundary correspondence,” Nat. Commun. 14, 2828 (2023).
- Z. Gong and R. Hamazaki, “Bounds in nonequilibrium quantum dynamics,” Int. J. Mod. Phys. B 36, 2230007 (2022).
- D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and D. O. Soares-Pinto, “Generalized Geometric Quantum Speed Limits,” Phys. Rev. X 6, 021031 (2016).
- S. Deffner and S. Campbell, “Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control,” J. Phys. A: Math. Theor. 50, 453001 (2017).
- S. Deffner, “Geometric quantum speed limits: a case for Wigner phase space,” New J. Phys. 19, 103018 (2017).
- A. J. B. Rosal, D. P. Pires, and D. O. Soares-Pinto, “Quantum Speed Limits based on Schatten norms,” arXiv:2312.00533 (2023).
- H. Wang and X. Qiu, “Generalized Coherent Quantum Speed Limits,” arXiv:2401.01746 (2024).
- L. P. García-Pintos, S. B. Nicholson, J. R. Green, A. del Campo, and A. V. Gorshkov, “Unifying Quantum and Classical Speed Limits on Observables,” Phys. Rev. X 12, 011038 (2022).
- R. Hamazaki, “Speed Limits for Macroscopic Transitions,” PRX Quantum 3, 020319 (2022).
- K. Lan, S. Xie, and X. Cai, “Geometric quantum speed limits for Markovian dynamics in open quantum systems,” New J. Phys. 24, 055003 (2022).
- Z.-Y. Xu and S.-Q. Zhu, “Quantum Speed Limit of a Photon under Non-Markovian Dynamics,” Chinese Phys. Lett. 31, 020301 (2014).
- Z. Sun, J. Liu, J. Ma, and X. Wang, “Quantum speed limits in open systems: Non-Markovian dynamics without rotating-wave approximation,” Sci. Rep. 5, 8444 (2015).
- X. Meng, C. Wu, and H. Guo, “Minimal evolution time and quantum speed limit of non-Markovian open systems,” Sci. Rep. 5, 16357 (2015).
- N. Mirkin, F. Toscano, and D. A. Wisniacki, “Quantum-speed-limit bounds in an open quantum evolution,” Phys. Rev. A 94, 052125 (2016).
- Y.-J. Zhang, Y.-J. Xia, and H. Fan, “Control of quantum dynamics: Non-Markovianity and the speedup of the open system evolution,” EPL (Europhysics Letters) 116, 30001 (2016).
- A. Rivas, S. F. Huelga, and M. B. Plenio, “Quantum non-Markovianity: characterization, quantification and detection,” Rep. Prog. Phys. 77, 094001 (2014).
- J. Jing, L.-A. Wu, and A. del Campo, “Fundamental Speed Limits to the Generation of Quantumness,” Sci. Rep. 6, 38149 (2016).
- Z.-Y. Xu, S. Luo, W. L. Yang, C. Liu, and S. Zhu, “Quantum speedup in a memory environment,” Phys. Rev. A 89, 012307 (2014).
- M. Cianciaruso, S. Maniscalco, and G. Adesso, “Role of non-Markovianity and backflow of information in the speed of quantum evolution,” Phys. Rev. A 96, 012105 (2017).
- J. Teittinen, H. Lyyra, and S. Maniscalco, “There is no general connection between the quantum speed limit and non-Markovianity,” New J. Phys. 21, 123041 (2019).
- J. Teittinen and S. Maniscalco, “Quantum Speed Limit and Divisibility of the Dynamical Map,” Entropy 23, 331 (2021).
- G. Ness, M. R. Lam, W. Alt, D. Meschede, Y. Sagi, and A. Alberti, “Observing crossover between quantum speed limits,” Sci. Adv. 7, 9119 (2021).
- D. V. Villamizar, E. I. Duzzioni, A. C. S. Leal, and R. Auccaise, “Estimating the time evolution of NMR systems via a quantum-speed-limit–like expression,” Phys. Rev. A 97, 052125 (2018).
- Y. Kondo, Y. Matsuzaki, K. Matsushima, and J. G. Filgueiras, “Using the quantum Zeno effect for suppression of decoherence,” New J. Phys. 18, 013033 (2016).
- L. B. Ho, Y. Matsuzaki, M. Matsuzaki, and Y. Kondo, “Nuclear Magnetic Resonance Model of an Entangled Sensor under Noise,” J. Phys. Soc. Japan 89, 054001 (2020).
- A. Iwakura, Y. Matsuzaki, and Y. Kondo, “Engineered noisy environment for studying decoherence,” Phys. Rev. A 96, 032303 (2017).
- A. Abragam, The Principles of Nuclear Magnetism, International series of monographs on physics (Clarendon Press, 1961).
- L. B. Ho, Y. Matsuzaki, M. Matsuzaki, and Y. Kondo, “Realization of controllable open system with NMR,” New J. Phys. 21, 093008 (2019).
- Supplementary Materials at [URL will be inserted by publisher] for technical details about the experiment and sample preparation, and details on the derivation of geometric QSLs.
- Z. Zhou, R. Kummerle, X. Qiu, D. Redwine, R. Cong, A. Taha, D. Baugh, and B. Winniford, “A new decoupling method for accurate quantification of polyethylene copolymer composition and triad sequence distribution with 13C NMR,” J. Magn. Reson. 187, 225 (2007).
- E. A. Morozova and N. N. Čencov, “Markov Invariant Geometry on Manifolds of States,” J. Sov. Math. 56, 2648 (1991).
- D. Petz, “Monotone metrics on matrix spaces,” Linear Algebra Appl. 244, 81 (1996).
- I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006).
- M. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2010).
- J. Anandan and Y. Aharonov, “Geometry of quantum evolution,” Phys. Rev. Lett. 65, 1697 (1990).
- H. P. Breuer, E. M. Laine, and J. Piilo, “Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems,” Phys. Rev. Lett. 103, 210401 (2009).
- A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and Non-Markovianity of Quantum Evolutions,” Phys. Rev. Lett. 105, 050403 (2010).
- S. Luo, S. Fu, and H. Song, “Quantifying non-Markovianity via correlations,” Phys. Rev. A 86, 044101 (2012).
- A. Rivas, “Refined weak-coupling limit: Coherence, entanglement, and non-Markovianity,” Phys. Rev. A 95, 042104 (2017).
- Z. He, H.-S. Zeng, Y. Li, Q. Wang, and C. Yao, “Non-Markovianity measure based on the relative entropy of coherence in an extended space,” Phys. Rev. A 96, 022106 (2017).
- C. Radhakrishnan, P.-W. Chen, S. Jambulingam, T. Byrnes, and Md. M. Ali, “Time dynamics of quantum coherence and monogamy in a non-Markovian environment,” Sci. Rep 9, 2363 (2019).
- T. Chanda and S. Bhattacharya, “Delineating incoherent non-Markovian dynamics using quantum coherence,” Ann. Phys. 366, 1 (2016).
- K.-D. Du, Z. Hou, G.-Y. Xiang, C.-F. Li, G.-C. Guo, D. Dong, and F. Nori, “Detecting non-Markovianity via quantified coherence: theory and experiments,” npj Quantum Inf. 6, 55 (2020).
- T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying Coherence,” Phys. Rev. Lett. 113, 140401 (2014).
- A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a resource,” Rev. Mod. Phys. 89, 041003 (2017).
- M. Yu, Y. Liu, P. Yang, M. Gong, Q. Cao, S. Zhang, H. Liu, M. Heyl, T. Ozawa, N. Goldman, and J. Cai, “Quantum Fisher information measurement and verification of the quantum Cramér-Rao bound in a solid-state qubit,” npj Quantum Inf. 8, 56 (2022).
- X. Zhang, X.-M. Lu, J. Liu, W. Ding, and X. Wang, “Direct measurement of quantum Fisher information,” Phys. Rev. A 107, 012414 (2023).
- S. Luo, “Quantum uncertainty of mixed states based on skew information,” Phys. Rev. A 73, 022324 (2006).
- G. Tóth and D. Petz, “Extremal properties of the variance and the quantum Fisher information,” Phys. Rev. A 87, 032324 (2013).