Shallow Hitting Edge Sets in Uniform Hypergraphs (2307.05757v1)
Abstract: A subset $M$ of the edges of a graph or hypergraph is hitting if $M$ covers each vertex of $H$ at least once, and $M$ is $t$-shallow if it covers each vertex of $H$ at most $t$ times. We consider the existence of shallow hitting edge sets and the maximum size of shallow edge sets in $r$-uniform hypergraph $H$ that are regular or have a large minimum degree. Specifically, we show the following. Every $r$-uniform regular hypergraph has a $t$-shallow hitting edge set with $t = O(r)$. Every $r$-uniform regular hypergraph with $n$ vertices has a $t$-shallow edge set of size $\Omega(nt/r{1+1/t})$. Every $r$-uniform hypergraph with $n$ vertices and minimum degree $\delta_{r-1}(H) \geq n/((r-1)t+1)$ has a $t$-shallow hitting edge set. Every $r$-uniform $r$-partite hypergraph with $n$ vertices in each part and minimum degree $\delta'_{r-1}(H) \geq n/((r-1)t+1) +1$ has a $t$-shallow hitting edge set. We complement our results with constructions of $r$-uniform hypergraphs that show that most of our obtained bounds are best-possible.
- Perfect matchings in r𝑟ritalic_r-partite r𝑟ritalic_r-graphs. European J. Combin., 30(1):39–42, 2009. doi:10.1016/j.ejc.2008.02.011.
- Hall’s theorem for hypergraphs. Journal of Graph Theory, 35(2):83–88, 2000. URL: https://doi.org/10.1002/1097-0118(200010)35:2%3C83::AID-JGT2%3E3.0.CO;2-V.
- The probabilistic method. Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2016. doi:10.1002/9780470277331.
- On the existence of subgraphs with degree constraints. Indagationes Mathematicae (Proceedings), 81(2):165–176, 1978. doi:10.1016/1385-7258(78)90034-3.
- Maximum flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi:10.1109/FOCS54457.2022.00064.
- Charles J. Colbourn and Jeffrey H. Dinitz, editors. Handbook of combinatorial designs. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007. doi:10.1201/9781420010541.
- Perfect matchings in balanced hypergraphs. Combinatorica, 16(3):325–329, 1996. doi:10.1007/BF01261318.
- Gabriel Andrew Dirac. Some theorems on abstract graphs. Proceedings of the London Mathematical Society, 3(1):69–81, 1952. doi:10.1112/plms/s3-2.1.69.
- Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449––467, 1965. doi:10.4153/CJM-1965-045-4.
- Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and finite sets, volume 10 of Colloquia Math Soc János Bolyai, pages 609–627, 1973.
- Philip Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-10(1):26–30, 1935. doi:10.1112/jlms/s1-10.37.26.
- Penny E. Haxell. A condition for matchability in hypergraphs. Graphs and Combinatorics, 11(3):245–248, 1995. doi:10.1007/BF01793010.
- Tight lower bounds on the size of a maximum matching in a regular graph. Graphs and Combinatorics, 23(6):647–657, 2007. doi:10.1007/s00373-007-0757-5.
- Perfect matchings in balanced hypergraphs - A combinatorial approach. Combinatorica, 22(3):409–416, 2002. doi:10.1007/s004930200020.
- Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, 1972. doi:10.1007/978-1-4684-2001-2_9.
- Peter Keevash. The existence of designs II. arXiv preprint arXiv:1802.05900, 2018. URL: https://arxiv.org/abs/1802.05900.
- An abstract approach to polychromatic coloring: shallow hitting sets in ABA-free hypergraphs and pseudohalfplanes. Journal of Computational Geometry, 10(1):1–26, 2019. doi:10.20382/jocg.v10i1a1.
- Constructions of sparse uniform hypergraphs with high chromatic number. Random Structures & Algorithms, 36(1):46–56, 2010. doi:10.1002/rsa.20293.
- Matchings in hypergraphs of large minimum degree. J. Graph Theory, 51(4):269–280, 2006. doi:10.1002/jgt.20139.
- László Lovász. The Factorization of Graphs. II. Acta Mathematica Academiae Scientiarum Hungarica, 23(1–2):223–246, 1972. doi:10.1007/BF01889919.
- An O(|V||E|)𝑂𝑉𝐸O(\sqrt{|V|}|E|)italic_O ( square-root start_ARG | italic_V | end_ARG | italic_E | ) algorithm for finding maximum matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.12.
- Tim Planken. Shallow edge sets in hypergraphs. Master’s thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2022. URL: https://i11www.iti.kit.edu/_media/teaching/theses/ma-planken-22.pdf.
- A dirac-type theorem for 3-uniform hypergraphs. Combinatorics, Probability and Computing, 15(1-2):229–251, 2006. doi:10.1017/s0963548305007042.
- Perfect matchings in uniform hypergraphs with large minimum degree. European Journal of Combinatorics, 27(8):1333–1349, 2006. doi:10.1016/j.ejc.2006.05.008.
- Perfect matchings in large uniform hypergraphs with large minimum collective degree. Journal of Combinatorial Theory, Series A, 116(3):613–636, 2009. doi:10.1016/j.jcta.2008.10.002.
- Joel Spencer. Asymptotic lower bounds for Ramsey functions. Discrete Mathematics, 20:69–76, 1977. doi:10.1016/0012-365x(77)90044-9.
- William T. Tutte. The factorization of locally finite graphs. Canadian Journal of Mathematics, 2:44––49, 1950. doi:10.4153/CJM-1950-005-2.
- Yi Zhao. Recent advances on Dirac-type problems for hypergraphs. Recent Trends in Combinatorics, pages 145–165, 2016. doi:10.1007/978-3-319-24298-9_6.