Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shallow Hitting Edge Sets in Uniform Hypergraphs (2307.05757v1)

Published 7 Jul 2023 in math.CO and cs.DM

Abstract: A subset $M$ of the edges of a graph or hypergraph is hitting if $M$ covers each vertex of $H$ at least once, and $M$ is $t$-shallow if it covers each vertex of $H$ at most $t$ times. We consider the existence of shallow hitting edge sets and the maximum size of shallow edge sets in $r$-uniform hypergraph $H$ that are regular or have a large minimum degree. Specifically, we show the following. Every $r$-uniform regular hypergraph has a $t$-shallow hitting edge set with $t = O(r)$. Every $r$-uniform regular hypergraph with $n$ vertices has a $t$-shallow edge set of size $\Omega(nt/r{1+1/t})$. Every $r$-uniform hypergraph with $n$ vertices and minimum degree $\delta_{r-1}(H) \geq n/((r-1)t+1)$ has a $t$-shallow hitting edge set. Every $r$-uniform $r$-partite hypergraph with $n$ vertices in each part and minimum degree $\delta'_{r-1}(H) \geq n/((r-1)t+1) +1$ has a $t$-shallow hitting edge set. We complement our results with constructions of $r$-uniform hypergraphs that show that most of our obtained bounds are best-possible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Perfect matchings in r𝑟ritalic_r-partite r𝑟ritalic_r-graphs. European J. Combin., 30(1):39–42, 2009. doi:10.1016/j.ejc.2008.02.011.
  2. Hall’s theorem for hypergraphs. Journal of Graph Theory, 35(2):83–88, 2000. URL: https://doi.org/10.1002/1097-0118(200010)35:2%3C83::AID-JGT2%3E3.0.CO;2-V.
  3. The probabilistic method. Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2016. doi:10.1002/9780470277331.
  4. On the existence of subgraphs with degree constraints. Indagationes Mathematicae (Proceedings), 81(2):165–176, 1978. doi:10.1016/1385-7258(78)90034-3.
  5. Maximum flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi:10.1109/FOCS54457.2022.00064.
  6. Charles J. Colbourn and Jeffrey H. Dinitz, editors. Handbook of combinatorial designs. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007. doi:10.1201/9781420010541.
  7. Perfect matchings in balanced hypergraphs. Combinatorica, 16(3):325–329, 1996. doi:10.1007/BF01261318.
  8. Gabriel Andrew Dirac. Some theorems on abstract graphs. Proceedings of the London Mathematical Society, 3(1):69–81, 1952. doi:10.1112/plms/s3-2.1.69.
  9. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449––467, 1965. doi:10.4153/CJM-1965-045-4.
  10. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and finite sets, volume 10 of Colloquia Math Soc János Bolyai, pages 609–627, 1973.
  11. Philip Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-10(1):26–30, 1935. doi:10.1112/jlms/s1-10.37.26.
  12. Penny E. Haxell. A condition for matchability in hypergraphs. Graphs and Combinatorics, 11(3):245–248, 1995. doi:10.1007/BF01793010.
  13. Tight lower bounds on the size of a maximum matching in a regular graph. Graphs and Combinatorics, 23(6):647–657, 2007. doi:10.1007/s00373-007-0757-5.
  14. Perfect matchings in balanced hypergraphs - A combinatorial approach. Combinatorica, 22(3):409–416, 2002. doi:10.1007/s004930200020.
  15. Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, 1972. doi:10.1007/978-1-4684-2001-2_9.
  16. Peter Keevash. The existence of designs II. arXiv preprint arXiv:1802.05900, 2018. URL: https://arxiv.org/abs/1802.05900.
  17. An abstract approach to polychromatic coloring: shallow hitting sets in ABA-free hypergraphs and pseudohalfplanes. Journal of Computational Geometry, 10(1):1–26, 2019. doi:10.20382/jocg.v10i1a1.
  18. Constructions of sparse uniform hypergraphs with high chromatic number. Random Structures & Algorithms, 36(1):46–56, 2010. doi:10.1002/rsa.20293.
  19. Matchings in hypergraphs of large minimum degree. J. Graph Theory, 51(4):269–280, 2006. doi:10.1002/jgt.20139.
  20. László Lovász. The Factorization of Graphs. II. Acta Mathematica Academiae Scientiarum Hungarica, 23(1–2):223–246, 1972. doi:10.1007/BF01889919.
  21. An O⁢(|V|⁢|E|)𝑂𝑉𝐸O(\sqrt{|V|}|E|)italic_O ( square-root start_ARG | italic_V | end_ARG | italic_E | ) algorithm for finding maximum matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.12.
  22. Tim Planken. Shallow edge sets in hypergraphs. Master’s thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2022. URL: https://i11www.iti.kit.edu/_media/teaching/theses/ma-planken-22.pdf.
  23. A dirac-type theorem for 3-uniform hypergraphs. Combinatorics, Probability and Computing, 15(1-2):229–251, 2006. doi:10.1017/s0963548305007042.
  24. Perfect matchings in uniform hypergraphs with large minimum degree. European Journal of Combinatorics, 27(8):1333–1349, 2006. doi:10.1016/j.ejc.2006.05.008.
  25. Perfect matchings in large uniform hypergraphs with large minimum collective degree. Journal of Combinatorial Theory, Series A, 116(3):613–636, 2009. doi:10.1016/j.jcta.2008.10.002.
  26. Joel Spencer. Asymptotic lower bounds for Ramsey functions. Discrete Mathematics, 20:69–76, 1977. doi:10.1016/0012-365x(77)90044-9.
  27. William T. Tutte. The factorization of locally finite graphs. Canadian Journal of Mathematics, 2:44––49, 1950. doi:10.4153/CJM-1950-005-2.
  28. Yi Zhao. Recent advances on Dirac-type problems for hypergraphs. Recent Trends in Combinatorics, pages 145–165, 2016. doi:10.1007/978-3-319-24298-9_6.
Citations (1)

Summary

We haven't generated a summary for this paper yet.