Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermodynamics of computations with absolute irreversibility, unidirectional transitions, and stochastic computation times (2307.05713v3)

Published 11 Jul 2023 in cond-mat.stat-mech and physics.comp-ph

Abstract: Developing a thermodynamic theory of computation is a challenging task at the interface of non-equilibrium thermodynamics and computer science. In particular, this task requires dealing with difficulties such as stochastic halting times, unidirectional (possibly deterministic) transitions, and restricted initial conditions, features common in real-world computers. Here, we present a framework which tackles all such difficulties by extending the martingale theory of non-equilibrium thermodynamics to generic non-stationary Markovian processes, including those with broken detailed balance and/or absolute irreversibility. We derive several universal fluctuation relations and second-law-like inequalities that provide both lower and upper bounds on the intrinsic dissipation (mismatch cost) associated with any periodic process -- in particular the periodic processes underlying all current digital computation. Crucially, these bounds apply even if the process has stochastic stopping times, as it does in many computational machines. We illustrate our results with exhaustive numerical simulations of deterministic finite automata (DFA) processing bit strings, one of the fundamental models of computation from theoretical computer science. We also provide universal equalities and inequalities for the acceptance probability of words of a given length by a deterministic finite automaton in terms of thermodynamic quantities, and outline connections between computer science and stochastic resetting. Our results, while motivated from the computational context, are applicable far more broadly.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (125)
  1. Ken Sekimoto, Stochastic energetics, Vol. 799 (Springer, 2010).
  2. Christopher Jarzynski, “Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale,” Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011).
  3. Udo Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular machines,” Reports on Progress in Physics 75, 126001 (2012a).
  4. Naoto Shiraishi, Ken Funo,  and Keiji Saito, “Speed limit for classical stochastic processes,” Phys. Rev. Lett. 121, 070601 (2018).
  5. Tan Van Vu, Yoshihiko Hasegawa, et al., “Unified approach to classical speed limit and thermodynamic uncertainty relation,” Physical Review E 102, 062132 (2020).
  6. Tan Van Vu and Keiji Saito, “Thermodynamic unification of optimal transport: thermodynamic uncertainty relation, minimum dissipation, and thermodynamic speed limits,” Physical Review X 13, 011013 (2023).
  7. Andre C. Barato and Udo Seifert, “Thermodynamic uncertainty relation for biomolecular processes,” Phys. Rev. Lett. 114, 158101 (2015).
  8. Todd R. Gingrich, Jordan M. Horowitz, Nikolay Perunov,  and Jeremy L. England, “Dissipation bounds all steady-state fluctuations,” Phys. Rev. Lett. 116, 120601 (2016).
  9. Jordan M. Horowitz and Todd R. Gingrich, “Thermodynamic uncertainty relations constrain non-equilibrium fluctuations,” Nat. Phys. 16, 15–20 (2020).
  10. Yasuhiro Utsumi, Yasuchika Ito, Dimitry Golubev,  and Ferdinand Peper, “Computation time and thermodynamic uncertainty relation of brownian circuits,” arXiv:2205.10735  (2022).
  11. Raphaël Chetrite and Hugo Touchette, “Nonequilibrium markov processes conditioned on large deviations,” in Annales Henri Poincaré, Vol. 16 (Springer, 2015) pp. 2005–2057.
  12. Johannes Hoppenau, Daniel Nickelsen,  and Andreas Engel, “Level 2 and level 2.5 large deviation functionals for systems with and without detailed balance,” New journal of physics 18, 083010 (2016).
  13. Izaak Neri, Édgar Roldán,  and Frank Jülicher, “Statistics of infima and stopping times of entropy production and applications to active molecular processes,” Phys. Rev. X 7, 011019 (2017).
  14. Raphaël Chétrite, Shamik Gupta, Izaak Neri,  and Édgar Roldán, “Martingale theory for housekeeping heat,” Europhysics Letters 124, 60006 (2019).
  15. Gonzalo Manzano, Rosario Fazio,  and Édgar Roldán, “Quantum martingale theory and entropy production,” Phys. Rev. Lett. 122, 220602 (2019).
  16. Gonzalo Manzano, Diego Subero, Olivier Maillet, Rosario Fazio, Jukka P. Pekola,  and Édgar Roldán, “Thermodynamics of gambling demons,” Phys. Rev. Lett. 126, 080603 (2021).
  17. Gonzalo Manzano and Édgar Roldán, “Survival and extreme statistics of work, heat, and entropy production in steady-state heat engines,” Phys. Rev. E 105, 024112 (2022).
  18. Izaak Neri and Matteo Polettini, ‘‘Extreme value statistics of edge currents in Markov jump processes and their use for entropy production estimation,” SciPost Phys. 14, 131 (2023).
  19. Édgar Roldán, Izaak Neri, Raphael Chetrite, Shamik Gupta, Simone Pigolotti, Frank Jülicher,  and Ken Sekimoto, “Martingales for physicists,” arXiv:2210.09983  (2022).
  20. Marco Baiesi and Gianmaria Falasco, “Inflow rate, a time-symmetric observable obeying fluctuation relations,” Physical Review E 92, 042162 (2015).
  21. Ivan Di Terlizzi and Marco Baiesi, “Kinetic uncertainty relation,” Journal of Physics A: Mathematical and Theoretical 52, 02LT03 (2018a).
  22. Christian Maes, “Frenesy: Time-symmetric dynamical activity in nonequilibria,” Physics Reports 850, 1–33 (2020).
  23. Ryoichi Kawai, Juan MR Parrondo,  and Christian Van den Broeck, “Dissipation: The phase-space perspective,” Physical review letters 98, 080602 (2007a).
  24. Karel Proesmans, Jannik Ehrich,  and John Bechhoefer, “Finite-time landauer principle,” Physical Review Letters 125, 100602 (2020).
  25. Salambô Dago, Jorge Pereda, Nicolas Barros, Sergio Ciliberto,  and Ludovic Bellon, “Information and thermodynamics: fast and precise approach to landauer’s bound in an underdamped micromechanical oscillator,” Physical Review Letters 126, 170601 (2021).
  26. David H Wolpert and Artemy Kolchinsky, “Thermodynamics of computing with circuits,” New Journal of Physics 22, 063047 (2020), see updated version at arXiv.
  27. Thomas E Ouldridge and David H Wolpert, “Thermodynamics of deterministic finite automata operating locally and periodically,” arXiv:2208.06895  (2022).
  28. Gülce Kardeş and David Wolpert, “Inclusive thermodynamics of computational machines,” arXiv:2206.01165  (2022).
  29. Christopher Jarzynski, “Hamiltonian derivation of a detailed fluctuation theorem,” J. Stat. Phys , 77–102 (2000).
  30. Massimiliano Esposito, Katja Lindenberg,  and Christian Van den Broeck, “Entropy production as correlation between system and reservoir,” New Journal of Physics 12, 013013 (2010).
  31. Sebastian Deffner and Christopher Jarzynski, “Information processing and the second law of thermodynamics: An inclusive, hamiltonian approach,” Phys. Rev. X 3, 041003 (2013).
  32. Krzysztof Ptaszyński and Massimiliano Esposito, “Entropy production in open systems: The predominant role of intraenvironment correlations,” Physical Review Letters 123, 200603 (2019).
  33. Saar Rahav and Upendra Harbola, ‘‘An integral fluctuation theorem for systems with unidirectional transitions,” Journal of Statistical Mechanics: Theory and Experiment 2014, P10044 (2014).
  34. Arnab Pal and Saar Rahav, “Integral fluctuation theorems for stochastic resetting systems,” Physical Review E 96, 062135 (2017).
  35. Ivan Di Terlizzi and Marco Baiesi, “Kinetic uncertainty relation,” Journal of Physics A: Mathematical and Theoretical  (2018b), 10.1088/1751-8121/aaee34.
  36. Daniel M Busiello, Deepak Gupta,  and Amos Maritan, “Entropy production in systems with unidirectional transitions,” Physical Review Research 2, 023011 (2020).
  37. Ken Hiura and Shin-ichi Sasa, “Kinetic uncertainty relation on first-passage time for accumulated current,” Physical Review E 103, L050103 (2021).
  38. Charles Moslonka and Ken Sekimoto, “Martingale-induced local invariance in progressive quenching,” Physical Review E 105, 044146 (2022).
  39. Kiyoshi Kanazawa, Tomohiko G Sano, Takahiro Sagawa,  and Hisao Hayakawa, “Minimal model of stochastic athermal systems: Origin of non-gaussian noise,” Physical review letters 114, 090601 (2015).
  40. Massimiliano Esposito and Juan M. R. Parrondo, “Stochastic thermodynamics of hidden pumps,” Phys. Rev. E 91, 052114 (2015).
  41. Gonzalo Manzano, Jordan M. Horowitz,  and Juan M. R. Parrondo, “Quantum fluctuation theorems for arbitrary environments: Adiabatic and nonadiabatic entropy production,” Phys. Rev. X 8, 031037 (2018).
  42. Laura Tociu, Étienne Fodor, Takahiro Nemoto,  and Suriyanarayanan Vaikuntanathan, “How dissipation constrains fluctuations in nonequilibrium liquids: Diffusion, structure, and biased interactions,” Phys. Rev. X 9, 041026 (2019).
  43. See Ch. 4 in Ref. Roldán et al. (2022) for rigorous mathematical definitions and mathematical properties of stopping times, and examples of stopping times in physics (e.g. first-passage times).
  44. A version of this result even holds for quantum thermodynamic processes. For further discussion of the concept of mismatch cost in stochastic thermodynamics of computation see Kolchinsky and Wolpert (2017); Wolpert (2019); Kolchinsky and Wolpert (2021); Riechers and Gu (2021).
  45. An analogous notion of stochastic distinguishability was introduced in Ref. Manzano et al. (2021), in the context of forward and time-reversed non-stationary dynamics.
  46. Massimiliano Esposito and Christian Van den Broeck, “Three detailed fluctuation theorems,” Physical Review letters 104, 090601 (2010a).
  47. Takahiro Hatano and Shin-ichi Sasa, “Steady-state thermodynamics of langevin systems,” Physical review letters 86, 3463 (2001).
  48. Here D(ρ0||ρ¯τ)=\sum@\slimits@xρ0(x)l⁢n[ρ0(x)/ρ¯τ(x)]≥0D(\rho_{0}\,||\,\bar{\rho}_{\tau})=\sum@\slimits@_{x}\rho_{0}(x)\mathop{ln}% \nolimits[\rho_{0}(x)/\bar{\rho}_{\tau}(x)]\geq 0italic_D ( italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | | over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ) = start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) start_BIGOP italic_l italic_n end_BIGOP [ italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) / over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_x ) ] ≥ 0, is the Kullback-Leibler (KL) quantifying the “distance” between the initial distribution of the computer’s state ρ0subscript𝜌0\rho_{0}italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and the distribution ρ¯τsubscript¯𝜌𝜏\bar{\rho}_{\tau}over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT of the auxiliary computational process at the limit time τ𝜏\tauitalic_τ.
  49. I Di Terlizzi, M Gironella, D Herráez-Aguilar, T Betz, F Monroy, M Baiesi,  and F Ritort, “Variance sum rule for entropy production,” arXiv:2302.08565  (2023).
  50. T Nishiyama and Y Hasegawa, “Upper bound for entropy production in markov processes,” arXiv:2306.15251  (2023), 10.48550/arXiv.2306.15251.
  51. Domingos SP Salazar, “Upper bound for quantum entropy production from entropy flux,” Physical Review E 105, L042101 (2022).
  52. Artemy Kolchinsky and David H Wolpert, “Dependence of dissipation on the initial distribution over states,” Journal of Statistical Mechanics: Theory and Experiment 2017, 083202 (2017).
  53. D. H. Wolpert, A. Kolchinsky,  and J. A. Owen, “A space–time tradeoff for implementing a function with master equation dynamics,” Nat. Commun. 10, 1727 (2019).
  54. Juan MR Parrondo, Jordan M Horowitz,  and Takahiro Sagawa, “Thermodynamics of information,” Nature Physics 11, 131–139 (2015).
  55. Takahiro Sagawa, “Thermodynamic and logical reversibilities revisited,” Journal of Statistical Mechanics: Theory and Experiment 2014, P03025 (2014).
  56. Philipp Strasberg, Javier Cerrillo, Gernot Schaller,  and Tobias Brandes, “Thermodynamics of stochastic turing machines,” Physical Review E 92, 042104 (2015).
  57. Artemy Kolchinsky and David H Wolpert, “Thermodynamic costs of turing machines,” Physical Review Research 2, 033312 (2020).
  58. Udo Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular machines,” Reports on Progress in Physics 75, 126001 (2012b).
  59. R. Kawai, J. M. R. Parrondo,  and C. Van den Broeck, “Dissipation: The phase-space perspective,” Phys. Rev. Lett. 98, 080602 (2007b).
  60. J.A. Owen, A. Kolchinsky,  and D. H. Wolpert, “Number of hidden states needed to physically implement a given conditional distribution,” New Journal of Physics 21, 013022 (2019).
  61. Note that formula for F𝐹Fitalic_F is indeed linear in ϱtsubscriptitalic-ϱ𝑡\varrho_{t}italic_ϱ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT.
  62. Artemy Kolchinsky and David H Wolpert, “Dependence of integrated, instantaneous, and fluctuating entropy production on the initial state in quantum and classical processes,” Physical Review E 104, 054107 (2021).
  63. David H Wolpert, “The free energy requirements of biological organisms; implications for evolution,” Entropy 18, 138 (2016), erratum published in same journal.
  64. T. M. Cover and J. A. Thomas, Elements of Information Theory (2nd edition) (Jonh Wiley and Sons, 2012).
  65. Here we are interested in the marginal prior distribution over computational states x∈𝒳𝑥𝒳x\in\mathcal{X}italic_x ∈ caligraphic_X only, not over the set 𝒴𝒴\mathcal{Y}caligraphic_Y containing hidden states.
  66. Farita Tasnim and David H. Wolpert, “Stochastic thermodynamics of multiple co-evolving systems; beyond multipartite processes,” Entropy 25 (2023), 10.3390/e25071078.
  67. Yoshitsugu Oono and Marco Paniconi, “Steady state thermodynamics,” Progress of Theoretical Physics Supplement 130, 29–44 (1998).
  68. Massimiliano Esposito and Christian Van den Broeck, “Three faces of the second law. i. master equation formulation,” Phys. Rev. E 82, 011143 (2010b).
  69. Andre C Barato and Udo Seifert, “Stochastic thermodynamics with information reservoirs,” Physical Review E 90, 042150 (2014).
  70. Note that by “P⁢(j|i)𝑃conditional𝑗𝑖P(j\,|\,i)italic_P ( italic_j | italic_i )” we do not mean the Bayesian inverse of the forward transition matrix P⁢(i|j)𝑃conditional𝑖𝑗P(i\,|\,j)italic_P ( italic_i | italic_j ) — rather we mean that forward transition matrix evaluated for a transposed choice of the initial and final states.
  71. This can be easily checked from \sum@⁢\slimits@j⁢P¯⁢(i|j)⁢r′⁢(j)=\sum@⁢\slimits@j⁢P⁢(j|i)⁢r⁢(i)=r⁢(i)\sum@subscript\slimits@𝑗¯𝑃conditional𝑖𝑗superscript𝑟′𝑗\sum@subscript\slimits@𝑗𝑃conditional𝑗𝑖𝑟𝑖𝑟𝑖\sum@\slimits@_{j}\bar{P}(i\,|\,j)r^{\prime}(j)=\sum@\slimits@_{j}P(j\,|\,i)r(% i)=r(i)start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT over¯ start_ARG italic_P end_ARG ( italic_i | italic_j ) italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_j ) = start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_P ( italic_j | italic_i ) italic_r ( italic_i ) = italic_r ( italic_i ), which immediately implies [𝐖¯]⁢r′=rdelimited-[]¯𝐖superscript𝑟′𝑟[\bar{\mathbf{W}}]{r^{\prime}}={r}[ over¯ start_ARG bold_W end_ARG ] italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_r.
  72. E. T. Jaynes, Probability Theory. The Logic of Science. (Cambridge University Press, 2003).
  73. Francesco Buscemi and Valerio Scarani, “Fluctuation theorems from bayesian retrodiction,” Phys. Rev. E 103, 052111 (2021).
  74. Jacopo Surace and Matteo Scandi, “State retrieval beyond Bayes’ retrodiction,” Quantum 7, 990 (2023).
  75. Gonzalo Manzano, Jordan M. Horowitz,  and Juan M. R. Parrondo, “Nonequilibrium potential and fluctuation theorems for quantum maps,” Phys. Rev. E 92, 032129 (2015).
  76. Herbert Spohn, “Entropy production for quantum dynamical semigroups,” Journal of Mathematical Physics 19, 1227–1230 (1978), https://doi.org/10.1063/1.523789 .
  77. Yûto Murashita, Ken Funo,  and Masahito Ueda, “Nonequilibrium equalities in absolutely irreversible processes,” Phys. Rev. E 90, 042110 (2014).
  78. Ken Funo, Yûto Murashita,  and Masahito Ueda, “Quantum nonequilibrium equalities with absolute irreversibility,” New Journal of Physics 17, 075005 (2015).
  79. Y Masuyama, K Funo, Y Murashita, A Noguchi, S Kono, Y Tabuchi, R Yamazaki, M Ueda,  and Y Nakamura, “Information-to-work conversion by maxwell’s demon in a superconducting circuit quantum electrodynamical system,” Nature communications 9, 1291 (2018).
  80. David Williams, Probability with Martingales (Cambridge University Press, 1991).
  81. J. L. Doob, Stochastic Processes (Wiley, 1990).
  82. John AC Albay, Yonggun Jun, Pik-Yin Lai, et al., “Winning strategies of a gambling demon in a brownian particle under a squeezing potential,” Physical Review Research 5, 023115 (2023).
  83. M. Ribezzi-Crivellari and F. Ritort, “Large work extraction and the landauer limit in a continuous maxwell demon,” Nature Physics 15, 660–664 (2019).
  84. M. Rico-Pasto, R. K. Schmitt, M. Ribezzi-Crivellari, J. M. R. Parrondo, H. Linke, J. Johansson,  and F. Ritort, “Dissipation reduction and information-to-measurement conversion in dna pulling experiments with feedback protocols,” Phys. Rev. X 11, 031052 (2021).
  85. Ilya Prigogine, “Etude thermodynamique des phénomènes irréversibles,” Bull. Acad. Roy. Belg. Cl. Sci. 31, 600 (1945).
  86. L. Onsager and S. Machlup, “Fluctuations and irreversible processes,” Phys. Rev. 91, 1505–1512 (1953).
  87. L Bertini, A De Sole, D Gabrielli, G Jona-Lasinio,  and C Landim, “Minimum dissipation principle in stationary non-equilibrium states,” Journal of statistical physics 116, 831–841 (2004).
  88. J.W. Carlyle and A. Paz, “Realizations by stochastic finite automata,” Journal of Computer and System Sciences 5, 26–40 (1971).
  89. Jorge Castro and Ricard Gavaldà, “Learning probability distributions generated by finite-state machines,” in Topics in Grammatical Inference (Springer Berlin Heidelberg, 2016) pp. 113–142.
  90. Izaak Neri, Édgar Roldán, Simone Pigolotti,  and Frank Jülicher, “Integral fluctuation relations for entropy production at stopping times,” Journal of Statistical Mechanics: Theory and Experiment 2019, 104006 (2019).
  91. Martin R Evans, Satya N Majumdar,  and Grégory Schehr, “Stochastic resetting and applications,” Journal of Physics A: Mathematical and Theoretical 53, 193001 (2020).
  92. Shamik Gupta and Arun M Jayannavar, “Stochastic resetting: A (very) brief review,” Frontiers in Physics , 130 (2022).
  93. Ofir Tal-Friedman, Arnab Pal, Amandeep Sekhon, Shlomi Reuveni,  and Yael Roichman, “Experimental realization of diffusion with stochastic resetting,” The journal of physical chemistry letters 11, 7350–7355 (2020).
  94. Édgar Roldán, Ana Lisica, Daniel Sánchez-Taltavull,  and Stephan W Grill, “Stochastic resetting in backtrack recovery by rna polymerases,” Physical Review E 93, 062411 (2016).
  95. Paul C Bressloff, “Modeling active cellular transport as a directed search process with stochastic resetting and delays,” Journal of Physics A: Mathematical and Theoretical 53, 355001 (2020).
  96. Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul Dillenschneider,  and Eric Lutz, “Experimental verification of landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
  97. Yonggun Jun, Momčilo Gavrilov,  and John Bechhoefer, “High-precision test of landauer’s principle in a feedback trap,” Physical review letters 113, 190601 (2014).
  98. S. Ciliberto, “Experiments in stochastic thermodynamics: Short history and perspectives,” Phys. Rev. X 7, 021051 (2017).
  99. Ignacio A Martínez, Édgar Roldán, Luis Dinis,  and Raúl A Rica, “Colloidal heat engines: a review,” Soft matter 13, 22–36 (2017).
  100. JP Pekola, DS Golubev,  and DV Averin, “Maxwell’s demon based on a single qubit,” Physical Review B 93, 024501 (2016).
  101. Salambô Dago and Ludovic Bellon, “Dynamics of information erasure and extension of landauer’s bound to fast processes,” Physical Review Letters 128, 070604 (2022).
  102. Sidney Redner, A guide to first-passage processes (Cambridge university press, 2001).
  103. Vladimir Y Chernyak, Michael Chertkov,  and Christopher Jarzynski, “Path-integral analysis of fluctuation theorems for general langevin processes,” Journal of Statistical Mechanics: Theory and Experiment 2006, P08001 (2006).
  104. Gatien Verley, Raphaël Chétrite,  and David Lacoste, “Inequalities generalizing the second law of thermodynamics for transitions between nonstationary states,” Phys. Rev. Lett. 108, 120601 (2012).
  105. Arya Datta, Patrick Pietzonka,  and Andre C Barato, “Second law for active heat engines,” Physical Review X 12, 031034 (2022).
  106. Faezeh Khodabandehlou, Christian Maes,  and Karel Netočný, “A nernst heat theorem for nonequilibrium jump processes,” The Journal of Chemical Physics 158 (2023), 10.1063/5.0142694.
  107. Pritha Dolai, Christian Maes,  and Karel Netočnỳ, “Calorimetry for active systems,” SciPost Physics 14, 126 (2023).
  108. Yaakov Benenson, “Biomolecular computing systems: principles, progress and potential,” Nature Reviews Genetics 13, 455–468 (2012).
  109. Athel Cornish-Bowden, Fundamentals of enzyme kinetics (John Wiley and Sons, 2013).
  110. Julien O Dubuis, Gašper Tkačik, Eric F Wieschaus, Thomas Gregor,  and William Bialek, “Positional information, in bits,” Proceedings of the National Academy of Sciences 110, 16301–16308 (2013).
  111. Chunhe Li and Jin Wang, “Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths,” PLoS computational biology 9, e1003165 (2013).
  112. Jin Wang, “Landscape and flux theory of non-equilibrium dynamical systems with application to biology,” Advances in Physics 64, 1–137 (2015).
  113. Ivana Ban, Lucija Tomašić, Marianna Trakala, Iva M Tolić,  and Nenad Pavin, “Proliferative advantage of specific aneuploid cells drives evolution of tumor karyotypes,” Biophysical Journal 122, 632–645 (2023).
  114. Christopher Battle, Chase P Broedersz, Nikta Fakhri, Veikko F Geyer, Jonathon Howard, Christoph F Schmidt,  and Fred C MacKintosh, “Broken detailed balance at mesoscopic scales in active biological systems,” Science 352, 604–607 (2016).
  115. Étienne Fodor, Cesare Nardini, Michael E Cates, Julien Tailleur, Paolo Visco,  and Frédéric Van Wijland, “How far from equilibrium is active matter?” Physical review letters 117, 038103 (2016).
  116. Édgar Roldán, Jérémie Barral, Pascal Martin, Juan MR Parrondo,  and Frank Jülicher, “Quantifying entropy production in active fluctuations of the hair-cell bundle from time irreversibility and uncertainty relations,” New Journal of Physics 23, 083013 (2021).
  117. José A Morin, Francisco J Cao, José M Lázaro, J Ricardo Arias-Gonzalez, José M Valpuesta, José L Carrascosa, Margarita Salas,  and Borja Ibarra, “Mechano-chemical kinetics of dna replication: identification of the translocation step of a replicative dna polymerase,” Nucleic acids research 43, 3643–3652 (2015).
  118. Annwesha Dutta, Gunter M Schütz,  and Debashish Chowdhury, “Stochastic thermodynamics and modes of operation of a ribosome: A network theoretic perspective,” Physical Review E 101, 032402 (2020).
  119. David H Wolpert, “The stochastic thermodynamics of computation,” Journal of Physics A: Mathematical and Theoretical 52, 193001 (2019).
  120. Philipp Strasberg and Massimiliano Esposito, “Stochastic thermodynamics in the strong coupling regime: An unambiguous approach based on coarse graining,” Phys. Rev. E 95, 062101 (2017).
  121. Robert S. Whitney, “Non-markovian quantum thermodynamics: Laws and fluctuation theorems,” Phys. Rev. B 98, 085415 (2018).
  122. Cillian Cockrell and Ian J. Ford, “Stochastic thermodynamics in a non-markovian dynamical system,” Phys. Rev. E 105, 064124 (2022).
  123. A. Gomez-Marin, J. M. R. Parrondo,  and C. Van den Broeck, “Lower bounds on dissipation upon coarse graining,” Phys. Rev. E 78, 011107 (2008).
  124. Édgar Roldán and Juan M. R. Parrondo, “Estimating dissipation from single stationary trajectories,” Phys. Rev. Lett. 105, 150607 (2010).
  125. Paul M Riechers and Mile Gu, “Initial-state dependence of thermodynamic dissipation for any quantum process,” Physical Review E 103, 042145 (2021).
Citations (6)

Summary

We haven't generated a summary for this paper yet.