Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Many-Body Bound States in the Continuum (2307.05456v1)

Published 11 Jul 2023 in quant-ph, cond-mat.quant-gas, and cond-mat.stat-mech

Abstract: A bound state in the continuum (BIC) is a spatially bounded energy eigenstate lying in a continuous spectrum of extended eigenstates. While various types of single-particle BICs have been found in the literature, whether or not BICs can exist in genuinely many-body systems remains inconclusive. Here, we provide numerical and analytical pieces of evidence for the existence of many-body BICs in a one-dimensional Bose-Hubbard chain with an attractive impurity potential, which was previously known to host a BIC in the two-particle sector. We also demonstrate that the many-body BICs prevent the system from thermalization when one starts from simple initial states that can be prepared experimentally.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. J. von Neumann and E. Wigner, Über merkwürdige diskrete Eigenwerte, Physikalische Zeitschrift 30, 465 (1929).
  2. (a),  Ref. [1] contains a (non-essential) analytical mistake, which is corrected in Ref. [98] .
  3. D. R. Herrick, Construction of bound states in the continuum for epitaxial heterostructure superlattices, Physica B+C 85, 44 (1976).
  4. F. H. Stillinger, Potentials supporting positive-energy eigenstates and their application to semiconductor heterostructures, Physica B+C 85, 270 (1976).
  5. M. Robnik, A simple separable Hamiltonian having bound states in the continuum, Journal of Physics A: Mathematical and General 19, 3845 (1986).
  6. H. Friedrich and D. Wintgen, Interfering resonances and bound states in the continuum, Physical Review A 32, 3231 (1985).
  7. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Bound States in the Continuum in Photonics, Physical Review Letters 100, 183902 (2008).
  8. K. Koshelev, A. Bogdanov, and Y. Kivshar, Engineering with Bound States in the Continuum, Optics and Photonics News 31, 38 (2020).
  9. S. I. Azzam and A. V. Kildishev, Photonic Bound States in the Continuum: From Basics to Applications, Advanced Optical Materials 9, 2001469 (2021).
  10. A. Pavlov, I. Zabkov, and V. Klimov, Lasing threshold of the bound states in the continuum in the plasmonic lattices, Optics Express 26, 28948 (2018).
  11. J. M. Foley, S. M. Young, and J. D. Phillips, Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating, Physical Review B 89, 165111 (2014).
  12. L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, Integrated flat-top reflection filters operating near bound states in the continuum, Photonics Research 7, 1314 (2019).
  13. E. A. Bezus, D. A. Bykov, and L. L. Doskolovich, Integrated diffraction gratings on the Bloch surface wave platform supporting bound states in the continuum, Nanophotonics 10, 4331 (2021).
  14. J. M. Zhang, D. Braak, and M. Kollar, Bound States in the Continuum Realized in the One-Dimensional Two-Particle Hubbard Model with an Impurity, Physical Review Letters 109, 116405 (2012).
  15. T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900 (2006).
  16. M. Rigol, Breakdown of Thermalization in Finite One-Dimensional Systems, Physical Review Letters 103, 100403 (2009a).
  17. M. Rigol, Quantum quenches and thermalization in one-dimensional fermionic systems, Physical Review A 80, 053607 (2009b).
  18. A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized Thermalization in an Integrable Lattice System, Physical Review Letters 106, 140405 (2011).
  19. P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum Quench in the Transverse-Field Ising Chain, Physical Review Letters 106, 227203 (2011).
  20. R. Hamazaki, T. N. Ikeda, and M. Ueda, Generalized Gibbs ensemble in a nonintegrable system with an extensive number of local symmetries, Physical Review E 93, 032116 (2016).
  21. F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, Journal of Statistical Mechanics: Theory and Experiment 2016, 064002 (2016).
  22. L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, Journal of Statistical Mechanics: Theory and Experiment 2016, 064007 (2016).
  23. D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of Physics 321, 1126 (2006).
  24. V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Physical Review B 75, 155111 (2007).
  25. M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localization in the Heisenberg XXZ magnet in a random field, Physical Review B 77, 064426 (2008).
  26. A. Pal and D. A. Huse, Many-body localization phase transition, Physical Review B 82, 174411 (2010).
  27. R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015).
  28. D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Physical Review B 91, 081103 (2015).
  29. M. Serbyn, Z. Papić, and D. A. Abanin, Criterion for Many-Body Localization-Delocalization Phase Transition, Physical Review X 5, 041047 (2015).
  30. J. Z. Imbrie, On Many-Body Localization for Quantum Spin Chains, Journal of Statistical Physics 163, 998 (2016).
  31. N. Shiraishi and T. Mori, Systematic Construction of Counterexamples to the Eigenstate Thermalization Hypothesis, Physical Review Letters 119, 030601 (2017).
  32. K. Bull, I. Martin, and Z. Papić, Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models, Physical Review Letters 123, 030601 (2019).
  33. C.-J. Lin and O. I. Motrunich, Exact Quantum Many-Body Scar States in the Rydberg-Blockaded Atom Chain, Physical Review Letters 122, 173401 (2019).
  34. M. Schecter and T. Iadecola, Weak Ergodicity Breaking and Quantum Many-Body Scars in Spin-1 XY Magnets, Physical Review Letters 123, 147201 (2019).
  35. N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s Scars in Disordered Spin Chains, Physical Review Letters 124, 180604 (2020).
  36. K. Sanada, Y. Miao, and H. Katsura, Quantum many-body scars in spin models with multi-body interactions, arXiv:2304.13624  (2023).
  37. J. von Neumann, The European Physical Journal H 35, 201 (2010).
  38. J. M. Deutsch, Quantum statistical mechanics in a closed system, Physical Review A 43, 2046 (1991).
  39. M. Srednicki, Chaos and quantum thermalization, Physical Review E 50, 888 (1994).
  40. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  41. G. Biroli, C. Kollath, and A. M. Läuchli, Effect of Rare Fluctuations on the Thermalization of Isolated Quantum Systems, Physical Review Letters 105, 250401 (2010).
  42. M. Rigol and L. F. Santos, Quantum chaos and thermalization in gapped systems, Physical Review A 82, 011604(R) (2010).
  43. W. Beugeling, R. Moessner, and M. Haque, Finite-size scaling of eigenstate thermalization, Physical Review E 89, 042112 (2014).
  44. H. Kim, T. N. Ikeda, and D. A. Huse, Testing whether all eigenstates obey the eigenstate thermalization hypothesis, Physical Review E 90, 052105 (2014).
  45. R. Mondaini and M. Rigol, Eigenstate thermalization in the two-dimensional transverse field Ising model. II. Off-diagonal matrix elements of observables, Physical Review E 96, 012157 (2017).
  46. S. Sugimoto, R. Hamazaki, and M. Ueda, Test of the Eigenstate Thermalization Hypothesis Based on Local Random Matrix Theory, Physical Review Letters 126, 120602 (2021).
  47. S. Sugimoto, R. Hamazaki, and M. Ueda, Eigenstate Thermalization in Long-Range Interacting Systems, Physical Review Letters 129, 030602 (2022).
  48. (b), An example of such an operator A^xsubscript^𝐴𝑥\hat{A}_{x}over^ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT is A^x=2⁢cos⁡(π4⁢n^x)⁢cos⁡(π4⁢(n^x+1))(n^x+2)⁢(n^x+1)⁢b^x2,subscript^𝐴𝑥2𝜋4subscript^𝑛𝑥𝜋4subscript^𝑛𝑥1subscript^𝑛𝑥2subscript^𝑛𝑥1superscriptsubscript^𝑏𝑥2\displaystyle\hat{A}_{x}=\sqrt{\frac{\sqrt{2}\cos\quantity(\frac{\pi}{4}\hat{n% }_{x})\cos\quantity(\frac{\pi}{4}(\hat{n}_{x}+1))}{(\hat{n}_{x}+2)(\hat{n}_{x}% +1)}}\ \hat{b}_{x}^{2},over^ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG square-root start_ARG 2 end_ARG roman_cos ( start_ARG divide start_ARG italic_π end_ARG start_ARG 4 end_ARG over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_ARG ) roman_cos ( start_ARG divide start_ARG italic_π end_ARG start_ARG 4 end_ARG ( over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + 1 ) end_ARG ) end_ARG start_ARG ( over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + 2 ) ( over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + 1 ) end_ARG end_ARG over^ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (15) where n^x≔b^x†⁢b^x≔subscript^𝑛𝑥superscriptsubscript^𝑏𝑥†subscript^𝑏𝑥\hat{n}_{x}\coloneqq\hat{b}_{x}^{\dagger}\hat{b}_{x}over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ≔ over^ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT over^ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT .
  49. F. H. Stillinger and D. R. Herrick, Bound states in the continuum, Physical Review A 11, 446 (1975).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.