2000 character limit reached
Many-Body Bound States in the Continuum (2307.05456v1)
Published 11 Jul 2023 in quant-ph, cond-mat.quant-gas, and cond-mat.stat-mech
Abstract: A bound state in the continuum (BIC) is a spatially bounded energy eigenstate lying in a continuous spectrum of extended eigenstates. While various types of single-particle BICs have been found in the literature, whether or not BICs can exist in genuinely many-body systems remains inconclusive. Here, we provide numerical and analytical pieces of evidence for the existence of many-body BICs in a one-dimensional Bose-Hubbard chain with an attractive impurity potential, which was previously known to host a BIC in the two-particle sector. We also demonstrate that the many-body BICs prevent the system from thermalization when one starts from simple initial states that can be prepared experimentally.
- J. von Neumann and E. Wigner, Über merkwürdige diskrete Eigenwerte, Physikalische Zeitschrift 30, 465 (1929).
- (a), Ref. [1] contains a (non-essential) analytical mistake, which is corrected in Ref. [98] .
- D. R. Herrick, Construction of bound states in the continuum for epitaxial heterostructure superlattices, Physica B+C 85, 44 (1976).
- F. H. Stillinger, Potentials supporting positive-energy eigenstates and their application to semiconductor heterostructures, Physica B+C 85, 270 (1976).
- M. Robnik, A simple separable Hamiltonian having bound states in the continuum, Journal of Physics A: Mathematical and General 19, 3845 (1986).
- H. Friedrich and D. Wintgen, Interfering resonances and bound states in the continuum, Physical Review A 32, 3231 (1985).
- D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Bound States in the Continuum in Photonics, Physical Review Letters 100, 183902 (2008).
- K. Koshelev, A. Bogdanov, and Y. Kivshar, Engineering with Bound States in the Continuum, Optics and Photonics News 31, 38 (2020).
- S. I. Azzam and A. V. Kildishev, Photonic Bound States in the Continuum: From Basics to Applications, Advanced Optical Materials 9, 2001469 (2021).
- A. Pavlov, I. Zabkov, and V. Klimov, Lasing threshold of the bound states in the continuum in the plasmonic lattices, Optics Express 26, 28948 (2018).
- J. M. Foley, S. M. Young, and J. D. Phillips, Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating, Physical Review B 89, 165111 (2014).
- L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, Integrated flat-top reflection filters operating near bound states in the continuum, Photonics Research 7, 1314 (2019).
- E. A. Bezus, D. A. Bykov, and L. L. Doskolovich, Integrated diffraction gratings on the Bloch surface wave platform supporting bound states in the continuum, Nanophotonics 10, 4331 (2021).
- J. M. Zhang, D. Braak, and M. Kollar, Bound States in the Continuum Realized in the One-Dimensional Two-Particle Hubbard Model with an Impurity, Physical Review Letters 109, 116405 (2012).
- T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900 (2006).
- M. Rigol, Breakdown of Thermalization in Finite One-Dimensional Systems, Physical Review Letters 103, 100403 (2009a).
- M. Rigol, Quantum quenches and thermalization in one-dimensional fermionic systems, Physical Review A 80, 053607 (2009b).
- A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized Thermalization in an Integrable Lattice System, Physical Review Letters 106, 140405 (2011).
- P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum Quench in the Transverse-Field Ising Chain, Physical Review Letters 106, 227203 (2011).
- R. Hamazaki, T. N. Ikeda, and M. Ueda, Generalized Gibbs ensemble in a nonintegrable system with an extensive number of local symmetries, Physical Review E 93, 032116 (2016).
- F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, Journal of Statistical Mechanics: Theory and Experiment 2016, 064002 (2016).
- L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, Journal of Statistical Mechanics: Theory and Experiment 2016, 064007 (2016).
- D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of Physics 321, 1126 (2006).
- V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Physical Review B 75, 155111 (2007).
- M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localization in the Heisenberg XXZ magnet in a random field, Physical Review B 77, 064426 (2008).
- A. Pal and D. A. Huse, Many-body localization phase transition, Physical Review B 82, 174411 (2010).
- R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015).
- D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Physical Review B 91, 081103 (2015).
- M. Serbyn, Z. Papić, and D. A. Abanin, Criterion for Many-Body Localization-Delocalization Phase Transition, Physical Review X 5, 041047 (2015).
- J. Z. Imbrie, On Many-Body Localization for Quantum Spin Chains, Journal of Statistical Physics 163, 998 (2016).
- N. Shiraishi and T. Mori, Systematic Construction of Counterexamples to the Eigenstate Thermalization Hypothesis, Physical Review Letters 119, 030601 (2017).
- K. Bull, I. Martin, and Z. Papić, Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models, Physical Review Letters 123, 030601 (2019).
- C.-J. Lin and O. I. Motrunich, Exact Quantum Many-Body Scar States in the Rydberg-Blockaded Atom Chain, Physical Review Letters 122, 173401 (2019).
- M. Schecter and T. Iadecola, Weak Ergodicity Breaking and Quantum Many-Body Scars in Spin-1 XY Magnets, Physical Review Letters 123, 147201 (2019).
- N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s Scars in Disordered Spin Chains, Physical Review Letters 124, 180604 (2020).
- K. Sanada, Y. Miao, and H. Katsura, Quantum many-body scars in spin models with multi-body interactions, arXiv:2304.13624 (2023).
- J. von Neumann, The European Physical Journal H 35, 201 (2010).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Physical Review A 43, 2046 (1991).
- M. Srednicki, Chaos and quantum thermalization, Physical Review E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
- G. Biroli, C. Kollath, and A. M. Läuchli, Effect of Rare Fluctuations on the Thermalization of Isolated Quantum Systems, Physical Review Letters 105, 250401 (2010).
- M. Rigol and L. F. Santos, Quantum chaos and thermalization in gapped systems, Physical Review A 82, 011604(R) (2010).
- W. Beugeling, R. Moessner, and M. Haque, Finite-size scaling of eigenstate thermalization, Physical Review E 89, 042112 (2014).
- H. Kim, T. N. Ikeda, and D. A. Huse, Testing whether all eigenstates obey the eigenstate thermalization hypothesis, Physical Review E 90, 052105 (2014).
- R. Mondaini and M. Rigol, Eigenstate thermalization in the two-dimensional transverse field Ising model. II. Off-diagonal matrix elements of observables, Physical Review E 96, 012157 (2017).
- S. Sugimoto, R. Hamazaki, and M. Ueda, Test of the Eigenstate Thermalization Hypothesis Based on Local Random Matrix Theory, Physical Review Letters 126, 120602 (2021).
- S. Sugimoto, R. Hamazaki, and M. Ueda, Eigenstate Thermalization in Long-Range Interacting Systems, Physical Review Letters 129, 030602 (2022).
- (b), An example of such an operator A^xsubscript^𝐴𝑥\hat{A}_{x}over^ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT is A^x=2cos(π4n^x)cos(π4(n^x+1))(n^x+2)(n^x+1)b^x2,subscript^𝐴𝑥2𝜋4subscript^𝑛𝑥𝜋4subscript^𝑛𝑥1subscript^𝑛𝑥2subscript^𝑛𝑥1superscriptsubscript^𝑏𝑥2\displaystyle\hat{A}_{x}=\sqrt{\frac{\sqrt{2}\cos\quantity(\frac{\pi}{4}\hat{n% }_{x})\cos\quantity(\frac{\pi}{4}(\hat{n}_{x}+1))}{(\hat{n}_{x}+2)(\hat{n}_{x}% +1)}}\ \hat{b}_{x}^{2},over^ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG square-root start_ARG 2 end_ARG roman_cos ( start_ARG divide start_ARG italic_π end_ARG start_ARG 4 end_ARG over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_ARG ) roman_cos ( start_ARG divide start_ARG italic_π end_ARG start_ARG 4 end_ARG ( over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + 1 ) end_ARG ) end_ARG start_ARG ( over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + 2 ) ( over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + 1 ) end_ARG end_ARG over^ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (15) where n^x≔b^x†b^x≔subscript^𝑛𝑥superscriptsubscript^𝑏𝑥†subscript^𝑏𝑥\hat{n}_{x}\coloneqq\hat{b}_{x}^{\dagger}\hat{b}_{x}over^ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ≔ over^ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT over^ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT .
- F. H. Stillinger and D. R. Herrick, Bound states in the continuum, Physical Review A 11, 446 (1975).