Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Membership Inference Attacks on DNNs using Adversarial Perturbations (2307.05193v1)

Published 11 Jul 2023 in cs.LG and cs.CR

Abstract: Several membership inference (MI) attacks have been proposed to audit a target DNN. Given a set of subjects, MI attacks tell which subjects the target DNN has seen during training. This work focuses on the post-training MI attacks emphasizing high confidence membership detection -- True Positive Rates (TPR) at low False Positive Rates (FPR). Current works in this category -- likelihood ratio attack (LiRA) and enhanced MI attack (EMIA) -- only perform well on complex datasets (e.g., CIFAR-10 and Imagenet) where the target DNN overfits its train set, but perform poorly on simpler datasets (0% TPR by both attacks on Fashion-MNIST, 2% and 0% TPR respectively by LiRA and EMIA on MNIST at 1% FPR). To address this, firstly, we unify current MI attacks by presenting a framework divided into three stages -- preparation, indication and decision. Secondly, we utilize the framework to propose two novel attacks: (1) Adversarial Membership Inference Attack (AMIA) efficiently utilizes the membership and the non-membership information of the subjects while adversarially minimizing a novel loss function, achieving 6% TPR on both Fashion-MNIST and MNIST datasets; and (2) Enhanced AMIA (E-AMIA) combines EMIA and AMIA to achieve 8% and 4% TPRs on Fashion-MNIST and MNIST datasets respectively, at 1% FPR. Thirdly, we introduce two novel augmented indicators that positively leverage the loss information in the Gaussian neighborhood of a subject. This improves TPR of all four attacks on average by 2.5% and 0.25% respectively on Fashion-MNIST and MNIST datasets at 1% FPR. Finally, we propose simple, yet novel, evaluation metric, the running TPR average (RTA) at a given FPR, that better distinguishes different MI attacks in the low FPR region. We also show that AMIA and E-AMIA are more transferable to the unknown DNNs (other than the target DNN) and are more robust to DP-SGD training as compared to LiRA and EMIA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A. Qayyum, J. Qadir, M. Bilal, and A. Al-Fuqaha, “Secure and robust machine learning for healthcare: A survey,” IEEE Reviews in Biomedical Engineering, vol. 14, pp. 156–180, 2020.
  2. R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against machine learning models,” in 2017 IEEE symposium on security and privacy (SP).   IEEE, 2017, pp. 3–18.
  3. N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference attacks from first principles,” in 2022 IEEE Symposium on Security and Privacy (SP).   IEEE, 2022, pp. 1897–1914.
  4. J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri, “Enhanced membership inference attacks against machine learning models,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022, pp. 3093–3106.
  5. N. Khalid, A. Qayyum, M. Bilal, A. Al-Fuqaha, and J. Qadir, “Privacy-preserving artificial intelligence in healthcare: Techniques and applications,” Computers in Biology and Medicine, p. 106848, 2023.
  6. F. Tramèr, R. Shokri, A. San Joaquin, H. Le, M. Jagielski, S. Hong, and N. Carlini, “Truth serum: Poisoning machine learning models to reveal their secrets,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022, pp. 2779–2792.
  7. F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shumailov, and N. Papernot, “Is federated learning a practical pet yet?” arXiv preprint arXiv:2301.04017, 2023.
  8. T. Nguyen, P. Lai, K. Tran, N. Phan, and M. T. Thai, “Active membership inference attack under local differential privacy in federated learning,” arXiv preprint arXiv:2302.12685, 2023.
  9. M. Jagielski, M. Nasr, C. Choquette-Choo, K. Lee, and N. Carlini, “Students parrot their teachers: Membership inference on model distillation,” arXiv preprint arXiv:2303.03446, 2023.
  10. S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine learning: Analyzing the connection to overfitting,” in 2018 IEEE 31st computer security foundations symposium (CSF).   IEEE, 2018, pp. 268–282.
  11. H. Jalalzai, E. Kadoche, R. Leluc, and V. Plassier, “Membership inference attacks via adversarial examples,” arXiv preprint arXiv:2207.13572, 2022.
  12. H. Ali, M. S. Khan, A. Al-Fuqaha, and J. Qadir, “Tamp-x: Attacking explainable natural language classifiers through tampered activations,” Computers & Security, vol. 120, p. 102791, 2022.
  13. F. Khalid, H. Ali, M. A. Hanif, S. Rehman, R. Ahmed, and M. Shafique, “Fadec: A fast decision-based attack for adversarial machine learning,” in 2020 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2020, pp. 1–8.
  14. H. Ali, M. S. Khan, A. AlGhadhban, M. Alazmi, A. Alzamil, K. Al-Utaibi, and J. Qadir, “All your fake detector are belong to us: evaluating adversarial robustness of fake-news detectors under black-box settings,” IEEE Access, vol. 9, pp. 81 678–81 692, 2021.
  15. M. A. Butt, A. Qayyum, H. Ali, A. Al-Fuqaha, and J. Qadir, “Towards secure private and trustworthy human-centric embedded machine learning: An emotion-aware facial recognition case study,” Computers & Security, vol. 125, p. 103058, 2023.
  16. S. Latif, A. Qayyum, M. Usama, J. Qadir, A. Zwitter, and M. Shahzad, “Caveat emptor: the risks of using big data for human development,” Ieee technology and society magazine, vol. 38, no. 3, pp. 82–90, 2019.
  17. Y. Zhang, G. Bai, M. A. P. Chamikara, M. Ma, L. Shen, J. Wang, S. Nepal, M. Xue, L. Wang, and J. Liu, “Agrevader: Poisoning membership inference against byzantine-robust federated learning,” in Proceedings of the ACM Web Conference 2023, 2023, pp. 2371–2382.
  18. Y. Chen, C. Shen, Y. Shen, C. Wang, and Y. Zhang, “Amplifying membership exposure via data poisoning,” Advances in Neural Information Processing Systems, vol. 35, pp. 29 830–29 844, 2022.
  19. M. Jagielski, S. Wu, A. Oprea, J. Ullman, and R. Geambasu, “How to combine membership-inference attacks on multiple updated machine learning models,” Proceedings on Privacy Enhancing Technologies, vol. 3, pp. 211–232, 2023.
  20. J. Tan, D. LeJeune, B. Mason, H. Javadi, and R. G. Baraniuk, “A blessing of dimensionality in membership inference through regularization,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2023, pp. 10 968–10 993.
  21. S. Rezaei, Z. Shafiq, and X. Liu, “Accuracy-privacy trade-off in deep ensemble: A membership inference perspective,” in 2023 IEEE Symposium on Security and Privacy (SP).   IEEE Computer Society, 2022, pp. 1901–1918.
  22. Y. Liu, Z. Zhao, M. Backes, and Y. Zhang, “Membership inference attacks by exploiting loss trajectory,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022, pp. 2085–2098.
  23. G. Del Grosso, H. Jalalzai, G. Pichler, C. Palamidessi, and P. Piantanida, “Leveraging adversarial examples to quantify membership information leakage,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 399–10 409.
  24. X. Yuan and L. Zhang, “Membership inference attacks and defenses in neural network pruning,” in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp. 4561–4578.
  25. C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only membership inference attacks,” in International conference on machine learning.   PMLR, 2021, pp. 1964–1974.
  26. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 ieee symposium on security and privacy (sp).   Ieee, 2017, pp. 39–57.
  27. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” in International Conference on Learning Representations, 2018.
  28. F. Croce and M. Hein, “Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks,” in International conference on machine learning.   PMLR, 2020, pp. 2206–2216.
  29. H. Ali, M. A. Butt, F. Filali, A. Al-Fuqaha, and J. Qadir, “Consistent valid physically-realizable adversarial attack against crowd-flow prediction models,” arXiv preprint arXiv:2303.02669, 2023.
  30. J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness via randomized smoothing,” in international conference on machine learning.   PMLR, 2019, pp. 1310–1320.
  31. H. Ali, M. S. Khan, A. AlGhadhban, M. Alazmi, A. Alzamil, K. Al-utaibi, and J. Qadir, “Con-detect: Detecting adversarially perturbed natural language inputs to deep classifiers through holistic analysis,” Computers & Security, p. 103367, 2023.
  32. W. Nie, B. Guo, Y. Huang, C. Xiao, A. Vahdat, and A. Anandkumar, “Diffusion models for adversarial purification,” in International Conference on Machine Learning.   PMLR, 2022, pp. 16 805–16 827.
  33. N. Carlini, F. Tramer, K. D. Dvijotham, L. Rice, M. Sun, and J. Z. Kolter, “(certified!!) adversarial robustness for free!” in The Eleventh International Conference on Learning Representations, 2022.
  34. B. Jayaraman, L. Wang, K. Knipmeyer, Q. Gu, and D. Evans, “Revisiting membership inference under realistic assumptions,” Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 2, 2021.
  35. M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, 2015, pp. 1322–1333.
  36. Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The secret revealer: Generative model-inversion attacks against deep neural networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 253–261.
  37. S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial perturbations,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1765–1773.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hassan Ali (24 papers)
  2. Adnan Qayyum (25 papers)
  3. Ala Al-Fuqaha (82 papers)
  4. Junaid Qadir (110 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.