Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two classes of posets with real-rooted chain polynomials (2307.04839v2)

Published 10 Jul 2023 in math.CO

Abstract: The coefficients of the chain polynomial of a finite poset enumerate chains in the poset by their number of elements. It has been a challenging open problem to determine which posets have real-rooted chain polynomials. Two new classes of posets, namely those of all rank-selected subposets of Cohen-Macaulay simplicial posets and all noncrossing partition lattices associated to finite Coxeter groups, are shown to have this property. The first result generalizes one of Brenti and Welker. As a special case, the descent enumerator of permutations of the set ${1, 2,\dots,n}$ which have ascents at specified positions is shown to be real-rooted, hence log-concave and unimodal, and a good estimate for the location of the peak is deduced.

Citations (2)

Summary

We haven't generated a summary for this paper yet.