Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heisenberg-limited Hamiltonian learning for interacting bosons (2307.04690v1)

Published 10 Jul 2023 in quant-ph, cs.IT, cs.NA, math.IT, and math.NA

Abstract: We develop a protocol for learning a class of interacting bosonic Hamiltonians from dynamics with Heisenberg-limited scaling. For Hamiltonians with an underlying bounded-degree graph structure, we can learn all parameters with root mean squared error $\epsilon$ using $\mathcal{O}(1/\epsilon)$ total evolution time, which is independent of the system size, in a way that is robust against state-preparation and measurement error. In the protocol, we only use bosonic coherent states, beam splitters, phase shifters, and homodyne measurements, which are easy to implement on many experimental platforms. A key technique we develop is to apply random unitaries to enforce symmetry in the effective Hamiltonian, which may be of independent interest.

Citations (15)

Summary

We haven't generated a summary for this paper yet.