Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Practical Trustworthiness Model for DNN in Dedicated 6G Application (2307.04677v1)

Published 10 Jul 2023 in cs.NI and eess.SP

Abstract: AI is considered an efficient response to several challenges facing 6G technology. However, AI still suffers from a huge trust issue due to its ambiguous way of making predictions. Therefore, there is a need for a method to evaluate the AI's trustworthiness in practice for future 6G applications. This paper presents a practical model to analyze the trustworthiness of AI in a dedicated 6G application. In particular, we present two customized Deep Neural Networks (DNNs) to solve the Automatic Modulation Recognition (AMR) problem in Terahertz communications-based 6G technology. Then, a specific trustworthiness model and its attributes, namely data robustness, parameter sensitivity, and security covering adversarial examples, are introduced. The evaluation results indicate that the proposed trustworthiness attributes are crucial to evaluate the trustworthiness of DNN for this 6G application.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. V. Petrov, T. Kurner, and I. Hosako, “Ieee 802.15. 3d: First standardization efforts for sub-terahertz band communications toward 6g,” IEEE Communications Magazine, vol. 58, no. 11, pp. 28–33, 2020.
  2. “Ieee standard for high data rate wireless multi-media networks–amendment 2: 100 gb/s wireless switched point-to-point physical layer,” IEEE Std 802.15.3d-2017 (Amendment to IEEE Std 802.15.3-2016 as amended by IEEE Std 802.15.3e-2017), pp. 1–55, 2017.
  3. S. Hanna, C. Dick, and D. Cabric, “Combining deep learning and linear processing for modulation classification and symbol decoding,” in GLOBECOM 2020-2020 IEEE Global Communications Conference.   IEEE, 2020, pp. 1–7.
  4. Y. Guo, H. Jiang, J. Wu, and J. Zhou, “Open set modulation recognition based on dual-channel lstm model,” arXiv preprint arXiv:2002.12037, 2020.
  5. A. HLEG, “High-level expert group on artificial intelligence, ethics guidelines for trustworthy ai,” AI HLEG, Tech. Rep., 2019.
  6. S. Thiebes, S. Lins, and A. Sunyaev, “Trustworthy artificial intelligence,” Electronic Markets, vol. 31, no. 2, pp. 447–464, 2021.
  7. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of dependable and secure computing,” IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.
  8. B. Bauer, M. Ayache, S. Mulhem, M. Nitzan, J. Athavale, R. Buchty, and M. Berekovic, “On the dependability lifecycle of electrical/electronic product development: The dual-cone v-model,” Computer, vol. 55, no. 9, pp. 99–106, 2022.
  9. B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, and B. Zhou, “Trustworthy ai: From principles to practices,” ACM Comput. Surv., aug 2022, just Accepted. [Online]. Available: https://doi.org/10.1145/3555803
  10. S. Chen, Y. Zhang, Z. He, J. Nie, and W. Zhang, “A novel attention cooperative framework for automatic modulation recognition,” IEEE Access, vol. 8, pp. 15 673–15 686, 2020.
  11. W. Xiao, Z. Luo, and Q. Hu, “A review of research on signal modulation recognition based on deep learning,” Electronics, vol. 11, no. 17, p. 2764, 2022.
  12. J. Shi, S. Hong, C. Cai, Y. Wang, H. Huang, and G. Gui, “Deep learning-based automatic modulation recognition method in the presence of phase offset,” IEEE Access, vol. 8, pp. 42 841–42 847, 2020.
  13. H. Gu, Y. Wang, S. Hong, and G. Gui, “Blind channel identification aided generalized automatic modulation recognition based on deep learning,” IEEE Access, vol. 7, pp. 110 722–110 729, 2019.
  14. Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for automatic modulation recognition in cognitive radios,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, 2019.
  15. A. Jobin, M. Ienca, and E. Vayena, “The global landscape of ai ethics guidelines,” Nature Machine Intelligence, vol. 1, no. 9, pp. 389–399, 2019.
  16. J. M. Eckhardt, C. Herold, B. K. Jung, N. Dreyer, and T. Kürner, “Modular link level simulator for the physical layer of beyond 5g wireless communication systems,” Radio Science, vol. 57, no. 2, p. e2021RS007395, 2022, e2021RS007395 2021RS007395. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021RS007395
  17. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
  18. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  19. T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio signal classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168–179, 2018.
  20. G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W. Keckler, “Understanding error propagation in deep learning neural network (dnn) accelerators and applications,” ser. SC ’17.   New York, NY, USA: Association for Computing Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3126908.3126964
  21. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” in 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available: http://arxiv.org/abs/1312.6199
  22. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6572
  23. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in Artificial intelligence safety and security.   Chapman and Hall/CRC, 2018, pp. 99–112.
  24. U. Jang, X. Wu, and S. Jha, “Objective metrics and gradient descent algorithms for adversarial examples in machine learning,” in Proceedings of the 33rd Annual Computer Security Applications Conference, ser. ACSAC ’17.   New York, NY, USA: Association for Computing Machinery, 2017, p. 262–277. [Online]. Available: https://doi.org/10.1145/3134600.3134635
  25. S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and accurate method to fool deep neural networks,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.   IEEE Computer Society, 2016, pp. 2574–2582. [Online]. Available: https://doi.org/10.1109/CVPR.2016.282
  26. J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack: A query-efficient decision-based attack,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 1277–1294.
  27. P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models,” in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, ser. AISec ’17.   New York, NY, USA: Association for Computing Machinery, 2017, p. 15–26. [Online]. Available: https://doi.org/10.1145/3128572.3140448
  28. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 IEEE Symposium on Security and Privacy (SP).   Los Alamitos, CA, USA: IEEE Computer Society, may 2017, pp. 39–57. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/SP.2017.49
  29. M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, I. Molloy, and B. Edwards, “Adversarial robustness toolbox v1.2.0,” CoRR, vol. 1807.01069, 2018. [Online]. Available: https://arxiv.org/pdf/1807.01069
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Anouar Nechi (2 papers)
  2. Ahmed Mahmoudi (1 paper)
  3. Christoph Herold (35 papers)
  4. Daniel Widmer (4 papers)
  5. Thomas Kürner (10 papers)
  6. Mladen Berekovic (6 papers)
  7. Saleh Mulhem (4 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.