Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Frequency-Space Transmit Design and Receiver Processing with Dynamic Subarray for Terahertz Integrated Sensing and Communication (2307.04440v2)

Published 10 Jul 2023 in cs.IT, eess.SP, and math.IT

Abstract: Terahertz (THz) integrated sensing and communication (ISAC) enables simultaneous data transmission with Terabit-per-second (Tbps) rate and millimeter-level accurate sensing. To realize such a blueprint, ultra-massive antenna arrays with directional beamforming are used to compensate for severe path loss in the THz band. In this paper, the time-frequency-space transmit design is investigated for THz ISAC to generate time-varying scanning sensing beams and stable communication beams. Specifically, with the dynamic array-of-subarray (DAoSA) hybrid beamforming architecture and multi-carrier modulation, two ISAC hybrid precoding algorithms are proposed, namely, a vectorization (VEC) based algorithm that outperforms existing ISAC hybrid precoding methods and a low-complexity sensing codebook assisted (SCA) approach. Meanwhile, coupled with the transmit design, parameter estimation algorithms are proposed to realize high-accuracy sensing, including a wideband DAoSA MUSIC method for angle estimation and a sum-DFT-GSS approach for range and velocity estimation. Numerical results indicate that the proposed algorithms can realize centi-degree-level angle estimation accuracy and millimeter-level range estimation accuracy, which are one or two orders of magnitudes better than the methods in the millimeter-wave band. In addition, to overcome the cyclic prefix limitation and Doppler effects, an inter-symbol interference- and inter-carrier interference-tackled sensing algorithm is developed to refine sensing capabilities for THz ISAC.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Y. Wu and C. Han, “Time-frequency-space signal design with dynamic subarray for terahertz integrated sensing and communication,” in Proc. of IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2023.
  2. W. Tong and P. Zhu, “6G: The Next Horizon: From connected people and things to connected intelligence,” Cambridge University Press, 2021.
  3. I. F. Akyildiz et al., “Terahertz band communication: An old problem revisited and research directions for the next decade,” IEEE Transactions on Communications, vol. 70, no. 6, pp. 4250–4285, 2022.
  4. F. Liu et al., “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 6, pp. 1728–1767, 2022.
  5. C. Han et al., “THz ISAC: A physical-layer perspective of terahertz integrated sensing and communication,” IEEE Communications Magazine, vol. 62, no. 2, pp. 102–108, 2024.
  6. C. Han et al., “Hybrid beamforming for terahertz wireless communications: Challenges, architectures, and open problems,” IEEE Wireless Communications, vol. 28, no. 4, pp. 198–204, 2021.
  7. J. A. Zhang et al., “Enabling joint communication and radar sensing in mobile networks—a survey,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 306–345, 2022.
  8. C. Han et al., “Terahertz wireless channels: A holistic survey on measurement, modeling, and analysis,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1670–1707, 2022.
  9. C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, 2011.
  10. H. Sarieddeen et al., “An overview of signal processing techniques for terahertz communications,” Proceedings of the IEEE, vol. 109, no. 10, pp. 1628–1665, 2021.
  11. C. R. Berger et al., “Signal processing for passive radar using OFDM waveforms,” IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 1, pp. 226–238, 2010.
  12. J. Johnston et al., “MIMO OFDM dual-function radar-communication under error rate and beampattern constraints,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 6, pp. 1951–1964, 2022.
  13. M. F. Keskin et al., “MIMO-OFDM joint radar-communications: Is ICI friend or foe?” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1393–1408, 2021.
  14. J. A. Zhang et al., “Multibeam for joint communication and radar sensing using steerable analog antenna arrays,” IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 671–685, 2019.
  15. K. Wu et al., “Integrating low-complexity and flexible sensing into communication systems,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 6, pp. 1873–1889, 2022.
  16. Y. Wu et al., “Sensing integrated DFT-spread OFDM waveform and deep learning-powered receiver design for terahertz integrated sensing and communication systems,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 595–610, 2023.
  17. L. Gaudio et al., “On the effectiveness of OTFS for joint radar parameter estimation and communication,” IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 5951–5965, 2020.
  18. S. K. Dehkordi et al., “Beam-space MIMO radar for joint communication and sensing with OTFS modulation,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  19. K. Wu et al., “OTFS-based joint communication and sensing for future industrial IoT,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 1973–1989, 2023.
  20. Y. Wu et al., “DFT-spread orthogonal time frequency space system with superimposed pilots for terahertz integrated sensing and communication,” IEEE Transactions on Wireless Communications, 2023.
  21. H. Yuan et al., “Hybrid beamforming for mimo-ofdm terahertz wireless systems over frequency selective channels,” in Proc. of IEEE Global Communications Conference (GLOBECOM), 2018.
  22. H. Yuan et al., “Hybrid beamforming for terahertz multi-carrier systems over frequency selective fading,” IEEE Transactions on Communications, vol. 68, no. 10, pp. 6186–6199, 2020.
  23. L. Yan et al., “Energy-efficient dynamic-subarray with fixed true-time-delay design for terahertz wideband hybrid beamforming,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 10, pp. 2840–2854, 2022.
  24. F. Gao et al., “Wideband beamforming for hybrid massive MIMO terahertz communications,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1725–1740, 2021.
  25. K. Dovelos et al., “Channel estimation and hybrid combining for wideband terahertz massive mimo systems,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1604–1620, 2021.
  26. B. Zhai et al., “SS-OFDMA: Spatial-spread orthogonal frequency division multiple access for terahertz networks,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1678–1692, 2021.
  27. L. Samara et al., “Adapt and aggregate: Adaptive OFDM numerology and carrier aggregation for high data rate terahertz communications,” IEEE Journal of Selected Topics in Signal Processing, 2023.
  28. Y. Luo et al., “Optimization and quantization of multibeam beamforming vector for joint communication and radio sensing,” IEEE Transactions on Communications, vol. 67, no. 9, pp. 6468–6482, 2019.
  29. Z. Cheng et al., “Hybrid beamforming design for OFDM dual-function radar-communication system,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1455–1467, 2021.
  30. X. Wang et al., “Partially-connected hybrid beamforming design for integrated sensing and communication systems,” IEEE Transactions on Communications, vol. 70, no. 10, pp. 6648–6660, 2022.
  31. F. Liu and C. Masouros, “Hybrid beamforming with sub-arrayed MIMO radar: Enabling joint sensing and communication at mmWave band,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.
  32. L. Yan et al., “A dynamic array-of-subarrays architecture and hybrid precoding algorithms for terahertz wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 9, pp. 2041–2056, 2020.
  33. A. M. Elbir et al., “Terahertz-band joint ultra-massive MIMO radar-communications: Model-based and model-free hybrid beamforming,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1468–1483, 2021.
  34. X. Yu et al., “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 485–500, 2016.
  35. Y. Chen et al., “Millidegree-level direction-of-arrival estimation and tracking for terahertz ultra-massive mimo systems,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 869–883, 2022.
  36. T. Levanen et al., “Mobile communications beyond 52.6 GHz: Waveforms, numerology, and phase noise challenge,” IEEE Wireless Communications, vol. 28, no. 1, pp. 128–135, 2021.
  37. K. Rikkinen et al., “THz radio communication: Link budget analysis toward 6G,” IEEE Communications Magazine, vol. 58, no. 11, pp. 22–27, 2020.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com