Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selling to Multiple No-Regret Buyers (2307.04175v1)

Published 9 Jul 2023 in cs.GT

Abstract: We consider the problem of repeatedly auctioning a single item to multiple i.i.d buyers who each use a no-regret learning algorithm to bid over time. In particular, we study the seller's optimal revenue, if they know that the buyers are no-regret learners (but only that their behavior satisfies some no-regret property -- they do not know the precise algorithm/heuristic used). Our main result designs an auction that extracts revenue equal to the full expected welfare whenever the buyers are "mean-based" (a property satisfied by standard no-regret learning algorithms such as Multiplicative Weights, Follow-the-Perturbed-Leader, etc.). This extends a main result of [BMSW18] which held only for a single buyer. Our other results consider the case when buyers are mean-based but never overbid. On this front, [BMSW18] provides a simple LP formulation for the revenue-maximizing auction for a single-buyer. We identify several formal barriers to extending this approach to multiple buyers.

Citations (11)

Summary

We haven't generated a summary for this paper yet.