Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Rosko: Row Skipping Outer Products for Sparse Matrix Multiplication Kernels (2307.03930v1)

Published 8 Jul 2023 in cs.LG, cs.AR, cs.PF, and cs.PL

Abstract: We propose Rosko -- row skipping outer products -- for deriving sparse matrix multiplication (SpMM) kernels in reducing computation and memory access requirements of deep neural networks (DNNs). Rosko allows skipping of entire row computations during program execution with low sparsity-management overheads. We analytically derive sparse CPU kernels that adapt to given hardware characteristics to effectively utilize processor cores and minimize data movement without the need for auto-tuning or search space exploration. Rosko can be integrated with other outer product scheduling methods, allowing them to leverage row skipping by using Rosko's packing format to skip unnecessary computation. Rosko kernels outperform existing auto-tuning and search-based solutions as well as state-of-the-art vendor-optimized libraries on real hardware across a variety of neural network workloads. For matrices with sparsities ranging from 65% to 99.8% typically found in machine learning, Rosko kernels achieve up to a 6.5x runtime reduction on Intel and ARM CPUs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.