Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling critical connectivity constraints in random and empirical networks (2307.03559v1)

Published 7 Jul 2023 in physics.soc-ph and cs.SI

Abstract: Random networks are a powerful tool in the analytical modeling of complex networks as they allow us to write approximate mathematical models for diverse properties and behaviors of networks. One notable shortcoming of these models is that they are often used to study processes in terms of how they affect the giant connected component of the network, yet they fail to properly account for that component. As an example, this approach is often used to answer questions such as how robust is the network to random damage but fails to capture the structure of the network before any inflicted damage. Here, we introduce a simple conceptual step to account for such connectivity constraints in existing models. We distinguish network neighbors into two types of connections that can lead or not to a component of interest, which we call critical and subcritical degrees. In doing so, we capture important structural features of the network in a system of only one or two equations. In particular cases where the component of interest is surprising under classic random network models, such as sparse connected networks, a single equation can approximate state-of-the art models like message passing which require a number of equations linear in system size. We discuss potential applications of this simple framework for the study of infrastructure networks where connectivity constraints are critical to the function of the system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. B. K. Fosdick, D. B. Larremore, J. Nishimura,  and J. Ugander, “Configuring Random Graph Models with Fixed Degree Sequences,” SIAM Rev. 60, 315–355 (2018).
  2. A. Vázquez and Y. Moreno, “Resilience to damage of graphs with degree correlations,” Phys. Rev. E 67, 015101 (2003).
  3. L. Hébert-Dufresne, A. Allard, J.-G. Young,  and L. J. Dubé, “Percolation on random networks with arbitrary k-core structure,” Phys. Rev. E 88, 062820 (2013).
  4. A. Allard and L. Hébert-Dufresne, “Percolation and the Effective Structure of Complex Networks,” Phys. Rev. X 9, 011023 (2019a).
  5. R. Albert, H. Jeong,  and A.-L. Barabási, “Error and attack tolerance of complex networks,” Nature 406, 378–382 (2000).
  6. M. E. J. Newman, “Spread of epidemic disease on networks,” Phys. Rev. E 66, 016128 (2002).
  7. M. E. J. Newman, “The structure of scientific collaboration networks,” Proc. Natl. Acad. Sci. U.S.A. 98, 404–409 (2001).
  8. K. Norlen, G. Lucas, M. Gebbie,  and J. Chuang, “EVA: Extraction, Visualization and Analysis of the Telecommunications and Media Ownership Network,” in Proceedings of International Telecommunications Society 14th Biennial Conference (ITS2002) (2002) pp. 27—129.
  9. J. H. Ring, J.-G. Young,  and L. Hébert-Dufresne, “Connected Graphs with a Given Degree Sequence: Efficient Sampling, Correlations, Community Detection and Robustness,” in Proceedings of NetSci-X 2020: Sixth International Winter School and Conference on Network Science (2020) pp. 33–47.
  10. A. Allard, L. Hébert-Dufresne, J.-G. Young,  and L. J. Dubé, “General and exact approach to percolation on random graphs,” Phys. Rev. E 92, 062807 (2015).
  11. B. Karrer, M. E. J. Newman,  and L. Zdeborová, “Percolation on Sparse Networks,” Phys. Rev. Lett. 113, 208702 (2014).
  12. R. Matei, A. Iamnitchi,  and P. Foster, “Mapping the Gnutella network,” IEEE Internet Comput. 6, 50–57 (2002).
  13. M. Dreze, A.-R. Carvunis, B. Charloteaux, M. Galli, S. J. Pevzner, M. Tasan, Y.-Y. Ahn, P. Balumuri, A.-L. Barabasi, V. Bautista, P. Braun, D. Byrdsong, H. Chen, J. D. Chesnut, M. E. Cusick, J. L. Dangl, C. de los Reyes, A. Dricot, M. Duarte, J. R. Ecker, C. Fan, L. Gai, F. Gebreab, G. Ghoshal, P. Gilles, B. J. Gutierrez, T. Hao, D. E. Hill, C. J. Kim, R. C. Kim, C. Lurin, A. MacWilliams, U. Matrubutham, T. Milenkovic, J. Mirchandani, D. Monachello, J. Moore, M. S. Mukhtar, E. Olivares, S. Patnaik, M. M. Poulin, N. Przulj, R. Quan, S. Rabello, G. Ramaswamy, P. Reichert, E. A. Rietman, T. Rolland, V. Romero, F. P. Roth, B. Santhanam, R. J. Schmitz, P. Shinn, W. Spooner, J. Stein, G. M. Swamilingiah, S. Tam, J. Vandenhaute, M. Vidal, S. Waaijers, D. Ware, E. M. Weiner, S. Wu,  and J. Yazaki, “Evidence for Network Evolution in an Arabidopsis Interactome Map,” Science 333, 601–607 (2011).
  14. Antoine Allard and Laurent Hébert-Dufresne, On the accuracy of message-passing approaches to percolation in complex networks, Preprint arXiv:1906.10377 (2019).

Summary

We haven't generated a summary for this paper yet.