Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Absolute value linear programming (2307.03510v1)

Published 7 Jul 2023 in math.OC, cs.NA, and math.NA

Abstract: We deal with linear programming problems involving absolute values in their formulations, so that they are no more expressible as standard linear programs. The presence of absolute values causes the problems to be nonconvex and nonsmooth, so hard to solve. In this paper, we study fundamental properties on the topology and the geometric shape of the solution set, and also conditions for convexity, connectedness, boundedness and integrality of the vertices. Further, we address various complexity issues, showing that many basic questions are NP-hard to solve. We show that the feasible set is a (nonconvex) polyhedral set and, more importantly, every nonconvex polyhedral set can be described by means of absolute value constraints. We also provide a necessary and sufficient condition when a KKT point of a nonconvex quadratic programming reformulation solves the original problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. E. Balas. Disjunctive Programming. Springer, Cham, 2018.
  2. J. W. Chinneck and K. Ramadan. Linear programming with interval coefficients. J. Oper. Res. Soc., 51(2):209–220, 2000.
  3. M. Hladík. Complexity of necessary efficiency in interval linear programming and multiobjective linear programming. Optim. Lett., 6(5):893–899, 2012.
  4. M. Hladík. Interval linear programming: A survey. In Z. A. Mann, editor, Linear Programming – New Frontiers in Theory and Applications, chapter 2, pages 85–120. Nova Science Publishers, New York, 2012.
  5. M. Hladík. How to determine basis stability in interval linear programming. Optim. Lett., 8(1):375–389, 2014.
  6. M. Hladík. On approximation of the best case optimal value in interval linear programming. Optim. Lett., 8(7):1985–1997, 2014.
  7. M. Hladík. Bounds for the solutions of absolute value equations. Comput. Optim. Appl., 69(1):243–266, 2018.
  8. M. Hladík. Properties of the solution set of absolute value equations and the related matrix classes. SIAM J. Matrix Anal. Appl., 2023. to appear.
  9. J. Koníčková. Sufficient condition of basis stability of an interval linear programming problem. ZAMM, Z. Angew. Math. Mech., 81(Suppl. 3):677–678, 2001.
  10. R. Krawczyk. Fehlerabschätzung bei linearer Optimierung. In K. Nickel, editor, Interval Mathemantics: Proceedings of the International Symposium, Karlsruhe, West Germany, May 20-24, 1975, volume 29 of LNCS, pages 215–222, Berlin Heidelberg, 1975. Springer. in German.
  11. O. L. Mangasarian. Absolute value programming. Comput. Optim. Appl., 36(1):43–53, 2007.
  12. O. L. Mangasarian. Unsupervised classification via convex absolute value inequalities. Optim., 64(1):81–86, 2015.
  13. Absolute value equations. Linear Algebra Appl., 419(2):359–367, 2006.
  14. G. Mayer. Interval Analysis and Automatic Result Verification, volume 65 of Studies in Mathematics. De Gruyter, Berlin, 2017.
  15. Introduction to Interval Analysis. SIAM, Philadelphia, PA, 2009.
  16. Optimal correction of the absolute value equations. J. Glob. Optim., 79(3):645–667, 2021.
  17. F. Mráz. Calculating the exact bounds of optimal values in LP with interval coefficients. Ann. Oper. Res., 81:51–62, 1998.
  18. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, 1990.
  19. Duality gap in interval linear programming. J. Optim. Theory Appl., 184(2):565–580, 2020.
  20. O. A. Prokopyev. On equivalent reformulations for absolute value equations. Comput. Optim. Appl., 44(3):363–372, 2009.
  21. J. Rohn. Duality in interval linear programming. In K. Nickel, editor, Interval Mathematics, Proc. Int. Symp., Freiburg, 1980, pages 521–529, New York, 1980. Academic Press.
  22. J. Rohn. Interval linear systems. Freiburger Intervall-Berichte 84/7, Albert-Ludwigs-Universität, Freiburg, 1984.
  23. J. Rohn. Interval linear programming. In M. Fiedler et al., editor, Linear Optimization Problems with Inexact Data, chapter 3, pages 79–100. Springer, New York, 2006.
  24. J. Rohn. Solvability of systems of interval linear equations and inequalities. In M. Fiedler et al., editor, Linear Optimization Problems with Inexact Data, chapter 2, pages 35–77. Springer, New York, 2006.
  25. J. Rohn. An algorithm for computing all solutions of an absolute value equation. Optim. Lett., 6(5):851–856, 2012.
  26. A. Schrijver. Theory of Linear and Integer Programming. Repr. Wiley, Chichester, 1998.
  27. P. Serafini. Linear programming with variable matrix entries. Oper. Res. Lett., 33(2):165–170, 2005.
  28. S. Yamanaka and M. Fukushima. A branch-and-bound method for absolute value programs. Optim., 63(2):305–319, 2014.
  29. M. Zamani and M. Hladík. A new concave minimization algorithm for the absolute value equation solution. Optim. Lett., 15(6):2241–2254, 2021.
  30. M. Zamani and M. Hladík. Error bounds and a condition number for the absolute value equations. Mathematical Programming, 2022.

Summary

We haven't generated a summary for this paper yet.