Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Topological Version of Schaefer's Dichotomy Theorem (2307.03446v1)

Published 7 Jul 2023 in cs.CC and math.AT

Abstract: Schaefer's dichotomy theorem [Schaefer, STOC'78] states that a boolean constraint satisfaction problem (CSP) is polynomial-time solvable if one of six given conditions holds for every type of constraint allowed in its instances. Otherwise, it is NP-complete. In this paper, we analyze boolean CSPs in terms of their topological complexity, instead of their computational complexity. We attach a natural topological space to the set of solutions of a boolean CSP and introduce the notion of projection-universality. We prove that a boolean CSP is projection-universal if and only if it is categorized as NP-complete by Schaefer's dichotomy theorem, showing that the dichotomy translates exactly from computational to topological complexity. We show a similar dichotomy for SAT variants and homotopy-universality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. The art gallery problem is ∃ℝℝ\exists\mathbb{R}∃ blackboard_R-complete. Journal of the ACM, 69(1), 2021. doi:10.1145/3486220.
  2. The complexity of satisfiability problems: Refining schaefer’s theorem. Journal of Computer and System Sciences, 75(4):245–254, 2009. doi:10.1016/j.jcss.2008.11.001.
  3. Regular matroids have polynomial extension complexity. Mathematics of Operations Research, 47(1):540–559, 2022. doi:10.1287/moor.2021.1137.
  4. On the extension complexity of combinatorial polytopes. In Fedor V. Fomin, Rūsiņš Freivalds, Marta Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming, pages 57–68, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-39206-1_6.
  5. Topological art in simple galleries. In Symposium on Simplicity in Algorithms (SOSA), pages 87–116. SIAM, 2022. doi:10.1137/1.9781611977066.8.
  6. Training fully connected neural networks is ∃ℝℝ\exists\mathbb{R}∃ blackboard_R-complete. arXiv preprint, 2022. doi:10.48550/arXiv.2204.01368.
  7. Cubical polyhedra and homotopy, iii. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, 53(3-4):275–279, 9 1972. URL: http://eudml.org/doc/295890.
  8. Real Algebraic Geometry. Springer, 1998. doi:10.1007/978-3-662-03718-8.
  9. Schaefer’s theorem for graphs. Journal of the ACM, 62(3), 2015. doi:10.1145/2764899.
  10. Glen E. Bredon. Topology and Geometry. Graduate texts in mathematics. Springer-Verlag, 1993. doi:10.1007/978-1-4757-6848-0.
  11. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330, 2017. doi:10.1109/FOCS.2017.37.
  12. John Canny. Some algebraic and geometric computations in PSPACE. In STOC ’88: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages 460–467, 1988. doi:10.1145/62212.62257.
  13. Complexity of generalized satisfiability counting problems. Information and Computation, 125(1):1–12, 1996. doi:10.1006/inco.1996.0016.
  14. Ruchira S. Datta. Universality of Nash equilibria. Mathematics of Operations Research, 28(3):424–432, 2003.
  15. A universality theorem for nested polytopes. arXiv preprint, 2019. doi:10.48550/arXiv.1908.02213.
  16. Foundations of Algebraic Topology. Princeton University Press, Princeton, 1952. doi:10.1515/9781400877492.
  17. Linear vs. semidefinite extended formulations: Exponential separation and strong lower bounds. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC ’12, page 95–106, New York, NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2213977.2213988.
  18. Extension complexity of independent set polytopes. SIAM Journal on Computing, 47(1):241–269, 2018. doi:10.1137/16M109884X.
  19. Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
  20. Heisuke Hironaka. Triangulations of algebraic sets. In Robin Hartshorne, editor, Algebraic Geometry – Arcata 1974, volume 29 of Proceedings of Symposia in Pure Mathematics, pages 165–185, 1975. doi:10.1090/pspum/029.
  21. Kyle R. Hofmann. Triangulation of locally semi-algebraic spaces. PhD thesis, University of Michigan, 2009. URL: https://hdl.handle.net/2027.42/63851.
  22. A short proof that the extension complexity of the correlation polytope grows exponentially. Discrete & Computational Geometry, 53(2):397–401, Mar 2015. doi:10.1007/s00454-014-9655-9.
  23. Representing matroids over the reals is ∃ℝℝ\exists\mathbb{R}∃ blackboard_R-complete. arXiv preprint, 2023. doi:10.48550/arXiv.2301.03221.
  24. The complexity of general-valued csps. SIAM Journal on Computing, 46(3):1087–1110, 2017. doi:10.1137/16M1091836.
  25. Algebraic properties of valued constraint satisfaction problem. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming, pages 846–858, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.
  26. On classifying continuous constraint satisfaction problems. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 781–791, 2022. doi:10.1109/FOCS52979.2021.00081.
  27. Nicolai Mnëv. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In Oleg Y. Viro, editor, Topology and geometry – Rohlin seminar, pages 527–543. Springer-Verlag Berlin Heidelberg, 1988.
  28. Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4), 2018. doi:10.3390/a11040052.
  29. Sebastian Pokutta and Mathieu Van Vyve. A note on the extension complexity of the knapsack polytope. Operations Research Letters, 41(4):347–350, 2013. doi:10.1016/j.orl.2013.03.010.
  30. Realization spaces of 4-polytopes are universal. Bulletin of the American Mathematical Society, 32(4):403–412, 1995. doi:10.1090/S0273-0979-1995-00604-X.
  31. Gerhard Ringel. Teilungen der ebene durch geraden oder topologische geraden. Mathematische Zeitschrift, 64(1):79–102, Dec 1956. doi:10.1007/BF01166556.
  32. Marcus Schaefer. Complexity of some geometric and topological problems. In David Eppstein and Emden R. Gansner, editors, GD 2009: Graph Drawing, volume 5849 of Lecture Notes in Computer Science, pages 334–344, 2010. doi:10.1007/978-3-642-11805-0_32.
  33. The complexity of tensor rank. Theory of Computing Systems, 62(5):1161–1174, 2018. doi:10.1007/s00224-017-9800-y.
  34. Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, page 216–226, New York, NY, USA, 1978. Association for Computing Machinery. doi:10.1145/800133.804350.
  35. Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. arXiv preprint, 2016. doi:10.48550/arXiv.1606.09068.
  36. Yaroslav Shitov. The complexity of positive semidefinite matrix factorization. SIAM Journal on Optimization, 27(3):1898–1909, 2017. doi:10.1137/16M1080616.
  37. Stephen Smale. A Vietoris mapping theorem for homotopy. Proceedings of the American Mathematical Society, 8(3):604–610, 1957.
  38. Topological universality of the art gallery problem. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 58:1–58:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.SoCG.2023.58.
  39. Edward R. Swart. P=NP. Report No. CIS86-02, Department of Computer and Information Science, University of Guelph, Ontario, Canada, 194, 1986.
  40. Leopold Vietoris. Über die homologiegruppen der vereinigung zweier komplexe. Monatshefte für Mathematik und Physik, 37(1):159–162, Dec 1930. doi:10.1007/BF01696765.
  41. Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences, 43(3):441–466, 1991. doi:10.1016/0022-0000(91)90024-Y.
  42. Dmitriy Zhuk. A modification of the CSP algorithm for infinite languages. arXiv preprint, 2018. doi:10.48550/arXiv.1803.07465.
  43. Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5), 2020. doi:10.1145/3402029.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com