Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dynamic Equivalent Method for PMSG Based Wind Farms Under Asymmetrical Faults (2307.03389v1)

Published 7 Jul 2023 in eess.SY and cs.SY

Abstract: In this paper, a three-machine equivalent method applicable to asymmetrical faults is proposed considering the operating wind speed and fault severity. Firstly, direct-driven permanent magnet synchronous generator wind turbines (PMSGs) are clustered based on their different active power response characteristics considering the wind speed, the fault severity, and the negative sequence control strategy. Further, single-machine equivalent methods are proposed for each cluster of PMSGs. In particular, for the PMSGs with ramp recovery characteristics, a single-machine equivalent model with multi-segmented slope recovery is proposed, which can more accurately reflect the characteristics of the wind farm during the fault recovery. Moreover, an iterative simulation method is proposed to obtain the required clustering indicators before the actual occurrence of faults. Therefore, the proposed equivalent method can be used to analyze any anticipated contingency. Eventually, the effectiveness of the proposed method is verified on a modified IEEE 39-bus system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Y. Wang, Q. Hu, L. Li, A. M. Foley, and D. Srinivasan, “Approaches to wind power curve modeling: A review and discussion,” Renewable and Sustainable Energy Reviews, vol. 116, p. 109422, 2019.
  2. J. Zou, P. Chao, Y. Yan, Z. Hong, and L. Yan, “A survey of dynamic equivalent modeling for wind farm,” Renewable and Sustainable Energy Reviews, vol. 40, no. dec., pp. 956–963, 2014.
  3. Ö. Göksu, R. Teodorescu, C. L. Bak, F. Iov, and P. Carne Kjær, “Impact of wind power plant reactive current injection during asymmetrical grid faults,” IET Renewable Power Generation, vol. 7, no. 5, pp. 484–492, 2013.
  4. A. Camacho, M. Castilla, J. Miret, J. C. Vasquez, and E. Alarcon-Gallo, “Flexible voltage support control for three-phase distributed generation inverters under grid fault,” IEEE transactions on industrial electronics, vol. 60, no. 4, pp. 1429–1441, 2012.
  5. T. Neumann, T. Wijnhoven, G. Deconinck, and I. Erlich, “Enhanced dynamic voltage control of type 4 wind turbines during unbalanced grid faults,” IEEE Transactions on Energy Conversion, vol. 30, no. 4, pp. 1650–1659, 2015.
  6. J. Brochu, C. Larose, and R. Gagnon, “Validation of single- and multiple-machine equivalents for modeling wind power plants,” IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 532–541, Jun. 2011.
  7. Y. Jin, P. Ju, C. Rehtanz, F. Wu, and X. Pan, “Equivalent modeling of wind energy conversion considering overall effect of pitch angle controllers in wind farm,” Applied Energy, vol. 222, pp. 485–496, 2018.
  8. W. Li, P. Chao, X. Liang, J. Ma, D. Xu, and X. Jin, “A practical equivalent method for DFIG wind farms,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 610–620, 2017.
  9. P. Wang, Z. Zhang, Q. Huang, and W.-J. Lee, “Wind farm dynamic equivalent modeling method for power system probabilistic stability assessment,” IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2273–2280, 2020.
  10. M. Ali, I.-S. Ilie, J. V. Milanovic, and G. Chicco, “Wind farm model aggregation using probabilistic clustering,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 309–316, 2012.
  11. D. Li, C. Shen, L. Wu, X. Cheng, and Y. Yang, “Study on fault response characteristics classification and discriminant method of PMSG considering initial wind speed and drop degree of terminal fault steady-state voltage,” Proceedings of the CSEE, pp. 1–15, 2022.
  12. M. Ding and Q. Zhu, “Equivalent modeling of PMSG-based wind power plants considering LVRT capabilities: electromechanical transients in power systems,” SpringerPlus, vol. 5, no. 1, p. 2037, 2016.
  13. Y. Gao, Y. Jin, P. Ju, and Q. Zhou, “Dynamic equivalence of wind farm composed of double fed induction generators considering operation characteristic of crowbar,” Power System Technology, vol. 39, no. 3, pp. 628–633, 2015.
  14. J. Zou, C. Peng, H. Xu, and Y. Yan, “A fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG,” IEEE transactions on energy conversion, vol. 30, no. 4, pp. 1329–1337, 2015.
  15. S. Chen, C. Wang, H. Shen, N. Gao, L. Zhu, and H. Lan, “Dynamic equivalence for wind farms based on clustering algorithm,” Proceedings of the CSEE, vol. 32, no. 4, pp. 11–19, 2012.
  16. R. Fang, R. Shang, M. Wu, C. Peng, and X. Guo, “Application of gray relational analysis to k-means clustering for dynamic equivalent modeling of wind farm,” International Journal of Hydrogen Energy, vol. 42, no. 31, pp. 20 154–20 163, 2017.
  17. Y. Xue, Z. Zhang, and Z. Xu, “A dynamic equivalent aggregation method of wind turbine systems with a full-scale power converter for electromagnetic transient simulations,” IET Renewable Power Generation, vol. 17, no. 1, pp. 36–51, 2023.
  18. M. Liu, W. Pan, Y. Zhang, K. Zhao, S. Zhang, and T. Liu, “A dynamic equivalent model for dfig-based wind farms,” IEEE Access, vol. 7, pp. 74 931–74 940, 2019.
  19. Z. Wang, G. Yang, Y. Tang, W. Cai, S. Liu, X. Wang, and J. Ouyang, “Modeling method of direct-driven wind generators wind farm based on feature influence factors and improved BP algorithm,” Proceedings of the CSEE, vol. 9, 2019.
  20. P. Chao, W. Li, X. Liang, S. Xu, and Y. Shuai, “An analytical two-machine equivalent method of dfig-based wind power plants considering complete frt processes,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3657–3667, 2021.
  21. W. Li, P. Chao, X. Liang, D. Xu, and X. Jin, “An improved single-machine equivalent method of wind power plants by calibrating power recovery behaviors,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4371–4381, 2017.
  22. S. Alepuz, S. Busquets-Monge, J. Bordonau, J. A. Martínez-Velasco, C. A. Silva, J. Pontt, and J. Rodríguez, “Control strategies based on symmetrical components for grid-connected converters under voltage dips,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2162–2173, 2009.
  23. Y. Hu, Z. Q. Zhu, and M. Odavic, “Instantaneous power control for suppressing the second-harmonic dc-bus voltage under generic unbalanced operating conditions,” IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3998–4006, 2016.
  24. T. Wang, S. Huang, M. Gao, and Z. Wang, “Adaptive extended kalman filter based dynamic equivalent method of pmsg wind farm cluster,” IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2908–2917, 2021.
  25. C. Feltes, S. Engelhardt, J. Kretschmann, J. Fortmann, F. Koch, and I. Erlich, “Comparison of the grid support capability of dfig-based wind farms and conventional power plants with synchronous generators,” in 2009 IEEE Power & Energy Society General Meeting.   IEEE, 2009, pp. 1–7.
  26. J. Fortmann, S. Engelhardt, J. Kretschmann, C. Feltes, and I. Erlich, “New generic model of dfg-based wind turbines for rms-type simulation,” IEEE Transactions on Energy Conversion, vol. 29, no. 1, pp. 110–118, 2013.
  27. Z. Guo and W. Wu, “Data-driven model predictive control method for wind farms to provide frequency support,” IEEE Transactions on Energy Conversion, vol. 37, no. 2, pp. 1304–1313, 2021.
  28. M. Garcia-Gracia, M. P. Comech, J. Sallan, and A. Llombart, “Modelling wind farms for grid disturbance studies,” Renewable energy, vol. 33, no. 9, pp. 2109–2121, 2008.
  29. Y. Song, Y. Chen, Z. Yu, S. Huang, and C. Shen, “Cloudpss: A high-performance power system simulator based on cloud computing,” Energy Reports, vol. 6, pp. 1611–1618, 2020.
  30. CloudPSS, 2016. [Online]. Available: https://www.cloudpss.net/.
  31. M. Mercado-Vargas, D. Gómez-Lorente, O. Rabaza, and E. Alameda-Hernandez, “Aggregated models of permanent magnet synchronous generators wind farms,” Renewable Energy, vol. 83, pp. 1287–1298, 2015.

Summary

We haven't generated a summary for this paper yet.