Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing the vulnerabilities in SplitFed Learning: Assessing the robustness against Data Poisoning Attacks (2307.03197v1)

Published 4 Jul 2023 in cs.LG and cs.AI

Abstract: Distributed Collaborative Machine Learning (DCML) is a potential alternative to address the privacy concerns associated with centralized machine learning. The Split learning (SL) and Federated Learning (FL) are the two effective learning approaches in DCML. Recently there have been an increased interest on the hybrid of FL and SL known as the SplitFed Learning (SFL). This research is the earliest attempt to study, analyze and present the impact of data poisoning attacks in SFL. We propose three kinds of novel attack strategies namely untargeted, targeted and distance-based attacks for SFL. All the attacks strategies aim to degrade the performance of the DCML-based classifier. We test the proposed attack strategies for two different case studies on Electrocardiogram signal classification and automatic handwritten digit recognition. A series of attack experiments were conducted by varying the percentage of malicious clients and the choice of the model split layer between the clients and the server. The results after the comprehensive analysis of attack strategies clearly convey that untargeted and distance-based poisoning attacks have greater impacts in evading the classifier outcomes compared to targeted attacks in SFL

Citations (5)

Summary

We haven't generated a summary for this paper yet.