Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of a Programmable Quantum Annealer as a Random Number Generator (2307.02573v4)

Published 5 Jul 2023 in quant-ph, cs.CR, and cs.ET

Abstract: Quantum devices offer a highly useful function - that is generating random numbers in a non-deterministic way since the measurement of a quantum state is not deterministic. This means that quantum devices can be constructed that generate qubits in a uniform superposition and then measure the state of those qubits. If the preparation of the qubits in a uniform superposition is unbiased, then quantum computers can be used to create high entropy, secure random numbers. Quantum annealing (QA) is a type of analog quantum computation that is a relaxed form of adiabatic quantum computation and uses quantum fluctuations in order to search for ground state solutions of a programmable Ising model. Here we present extensive experimental random number results from a D-Wave 2000Q quantum annealer, totaling over 20 billion bits of QA measurements, which is significantly larger than previous D-Wave QA random number generator studies. Current quantum annealers are susceptible to noise from environmental sources and calibration errors, and are not in general unbiased samplers. Therefore, it is of interest to quantify whether noisy quantum annealers can effectively function as an unbiased QRNG. The amount of data that was collected from the quantum annealer allows a comprehensive analysis of the random bits to be performed using the NIST SP 800-22 Rev 1a testsuite, as well as min-entropy estimates from NIST SP 800-90B. The randomness tests show that the generated random bits from the D-Wave 2000Q are biased, and not unpredictable random bit sequences. With no server-side sampling post-processing, the $1$ microsecond annealing time measurements had a min-entropy of $0.824$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. “A statistical test suite for random and pseudorandom number generators for cryptographic applications”, 2001
  2. Darren Hurley-Smith, Constantinos Patsakis and Julio Hernandez-Castro “On the Unbearable Lightness of FIPS 140–2 Randomness Tests” In IEEE Transactions on Information Forensics and Security 17, 2022, pp. 3946–3958 DOI: 10.1109/TIFS.2020.2988505
  3. “Error Analysis of NIST SP 800-22 Test Suite” In IEEE Transactions on Information Forensics and Security 18, 2023, pp. 3745–3759 DOI: 10.1109/TIFS.2023.3287391
  4. “Machine Learning Cryptanalysis of a Quantum Random Number Generator” In IEEE Transactions on Information Forensics and Security 14.2, 2019, pp. 403–414 DOI: 10.1109/TIFS.2018.2850770
  5. “Review of Methodologies and Metrics for Assessing the Quality of Random Number Generators” In Electronics 12.3, 2023 DOI: 10.3390/electronics12030723
  6. “Quantum annealing: A new method for minimizing multidimensional functions” In Chemical Physics Letters 219.5–6 Elsevier BV, 1994, pp. 343–348 DOI: 10.1016/0009-2614(94)00117-0
  7. Giuseppe E Santoro and Erio Tosatti “Optimization using quantum mechanics: quantum annealing through adiabatic evolution” In Journal of Physics A: Mathematical and General 39.36 IOP Publishing, 2006, pp. R393 DOI: 10.1088/0305-4470/39/36/R01
  8. “Quantum annealing in the transverse Ising model” In Physical Review E 58.5 American Physical Society (APS), 1998, pp. 5355–5363 DOI: 10.1103/physreve.58.5355
  9. “Mathematical foundation of quantum annealing” In Journal of Mathematical Physics 49.12 American Institute of Physics, 2008, pp. 125210 DOI: 10.1063/1.2995837
  10. Arnab Das and Bikas K Chakrabarti “Colloquium: Quantum annealing and analog quantum computation” In Reviews of Modern Physics 80.3 APS, 2008, pp. 1061 DOI: 10.1103/revmodphys.80.1061
  11. “Perspectives of quantum annealing: Methods and implementations” In Reports on Progress in Physics 83.5 IOP Publishing, 2020, pp. 054401 DOI: 10.1088/1361-6633/ab85b8
  12. “Theory of quantum annealing of an Ising spin glass” In Science 295.5564 American Association for the Advancement of Science, 2002, pp. 2427–2430 DOI: 10.1126/science.1068774
  13. “Quantum annealing with manufactured spins” In Nature 473.7346 Nature Publishing Group, 2011, pp. 194–198
  14. “Experimental signature of programmable quantum annealing” In Nature communications 4.1 Nature Publishing Group, 2013, pp. 1–8 DOI: 10.1038/ncomms3067
  15. “Entanglement in a Quantum Annealing Processor” In Phys. Rev. X 4 American Physical Society, 2014, pp. 021041 DOI: 10.1103/PhysRevX.4.021041
  16. “Quantum Optimization of Fully Connected Spin Glasses” In Physical Review X 5.3 American Physical Society (APS), 2015 DOI: 10.1103/physrevx.5.031040
  17. “Phase transitions in a programmable quantum spin glass simulator” In Science 361.6398 American Association for the Advancement of Science, 2018, pp. 162–165
  18. “Computational multiqubit tunnelling in programmable quantum annealers” In Nature communications 7.1 Nature Publishing Group UK London, 2016, pp. 10327 DOI: 10.1038/ncomms10327
  19. “Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets” In Nature communications 12.1 Nature Publishing Group, 2021, pp. 1–6 DOI: 10.1038/s41467-021-20901-5
  20. Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin “Quantum random number generators” In Rev. Mod. Phys. 89 American Physical Society, 2017, pp. 015004 DOI: 10.1103/RevModPhys.89.015004
  21. “Quantum random number generation” In npj Quantum Information 2.1 Nature Publishing Group, 2016, pp. 1–9 DOI: 10.1038/npjqi.2016.21
  22. “18.8 Gbps real-time quantum random number generator with a photonic integrated chip” In Applied Physics Letters 118.26 AIP Publishing, 2021 DOI: 10.1063/5.0056027
  23. “Parallel real-time quantum random number generator” In Opt. Lett. 44.22 Optica Publishing Group, 2019, pp. 5566–5569 DOI: 10.1364/OL.44.005566
  24. “Probing Environmental Spin Polarization with Superconducting Flux Qubits”, 2020 arXiv:2003.14244 [quant-ph]
  25. “Simulating the Shastry-Sutherland Ising Model Using Quantum Annealing” In PRX Quantum 1 American Physical Society, 2020, pp. 020320 DOI: 10.1103/PRXQuantum.1.020320
  26. Andrew D. King, Trevor Lanting and Richard Harris “Performance of a quantum annealer on range-limited constraint satisfaction problems” arXiv, 2015 DOI: 10.48550/ARXIV.1502.02098
  27. Elijah Pelofske, Georg Hahn and Hristo N Djidjev “Noise dynamics of quantum annealers: estimating the effective noise using idle qubits” In Quantum Science and Technology 8.3 IOP Publishing, 2023, pp. 035005 DOI: 10.1088/2058-9565/accbe6
  28. “A proposal of noise suppression for quantum annealing” arXiv, 2020 DOI: 10.48550/ARXIV.2006.13440
  29. Jessica Park, Susan Stepney and Irene D’Amico “Spatial correlations in the qubit properties of D-Wave 2000Q measured and simulated qubit networks”, 2023 arXiv:2305.07385 [quant-ph]
  30. “Statistical bias in D-wave qubits” In Journal of Physics: Conference Series 1936.1, 2021, pp. 012010 IOP Publishing
  31. Elijah Pelofske, Georg Hahn and Hristo N. Djidjev “Reducing Quantum Annealing Biases for Solving the Graph Partitioning Problem” In Proceedings of the 18th ACM International Conference on Computing Frontiers, CF ’21 Virtual Event, Italy: Association for Computing Machinery, 2021, pp. 133–139 DOI: 10.1145/3457388.3458672
  32. Yoshiki Matsuda, Hidetoshi Nishimori and Helmut G Katzgraber “Quantum annealing for problems with ground-state degeneracy” In Journal of Physics: Conference Series 143.1, 2009, pp. 012003 IOP Publishing DOI: 10.1088/1742-6596/143/1/012003
  33. “Uncertain fate of fair sampling in quantum annealing” In Phys. Rev. A 100 American Physical Society, 2019, pp. 030303 DOI: 10.1103/PhysRevA.100.030303
  34. Salvatore Mandrà, Zheng Zhu and Helmut G. Katzgraber “Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians” In Phys. Rev. Lett. 118 American Physical Society, 2017, pp. 070502 DOI: 10.1103/PhysRevLett.118.070502
  35. Zheng Zhu, Andrew J. Ochoa and Helmut G. Katzgraber “Fair sampling of ground-state configurations of binary optimization problems” In Phys. Rev. E 99 American Physical Society, 2019, pp. 063314 DOI: 10.1103/PhysRevE.99.063314
  36. “Advantages of unfair quantum ground-state sampling” In Scientific reports 7.1 Nature publishing group, 2017, pp. 1–12 DOI: 10.1038/s41598-017-01096-6
  37. “Generation of Truly Random Numbers on a Quantum Annealer” In IEEE Access 10, 2022, pp. 112832–112844 DOI: 10.1109/ACCESS.2022.3215500
  38. Rick Picard Sarah Michalak “Leveraging LANL’s D-WAVE 2X for Random Number Generation”, https://www.lanl.gov/projects/national-security-education-center/information-science-technology/dwave/assets/michalak_dwave2017.pdf, 2017
  39. “Quantum Random Numbers Generated by a Cloud Superconducting Quantum Computer” In International Symposium on Mathematics, Quantum Theory, and Cryptography Springer Singapore, 2020, pp. 17–37 DOI: 10.1007/978-981-15-5191-8˙6
  40. “Quantum random number generator using a cloud superconducting quantum computer based on source-independent protocol” In Scientific Reports 11.1 Nature Publishing Group, 2021, pp. 1–11
  41. “Quantum random number generators with entanglement for public randomness testing” In Scientific Reports 10.1 Nature Publishing Group, 2020, pp. 1–9 DOI: s41598-019-56706-2
  42. “Quantum Random Number Generation with the Superconducting Quantum Computer IBM 20Q Tokyo” https://eprint.iacr.org/2020/078, Cryptology ePrint Archive, Paper 2020/078, 2020 URL: https://eprint.iacr.org/2020/078
  43. “Pseudo Quantum Random Number Generator with Quantum Permutation Pad” In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), 2021, pp. 359–364 DOI: 10.1109/QCE52317.2021.00053
  44. “A Programmable True Random Number Generator Using Commercial Quantum Computers”, 2023 arXiv:2304.03830 [quant-ph]
  45. “An Unbiased Quantum Random Number Generator Based on Boson Sampling”, 2022 arXiv:2206.02292 [quant-ph]
  46. Anupam Sarkar and C. M. Chandrashekar “Multi-bit quantum random number generation from a single qubit quantum walk” In Scientific Reports 9.1 Springer ScienceBusiness Media LLC, 2019 DOI: 10.1038/s41598-019-48844-4
  47. “Novel pseudo-random number generator based on quantum random walks” In Scientific reports 6.1 Nature Publishing Group, 2016, pp. 1–11 DOI: 10.1038/srep20362
  48. “Device-independent quantum random-number generation” In Nature 562.7728 Springer ScienceBusiness Media LLC, 2018, pp. 548–551 DOI: 10.1038/s41586-018-0559-3
  49. “Validating quantum computers using randomized model circuits” In Phys. Rev. A 100 American Physical Society, 2019, pp. 032328 DOI: 10.1103/PhysRevA.100.032328
  50. “Re-examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations” In Quantum 6 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 707 DOI: 10.22331/q-2022-05-09-707
  51. Elijah Pelofske, Andreas Bärtschi and Stephan Eidenbenz “Quantum Volume in Practice: What Users Can Expect From NISQ Devices” In IEEE Transactions on Quantum Engineering 3 Institute of ElectricalElectronics Engineers (IEEE), 2022, pp. 1–19 DOI: 10.1109/tqe.2022.3184764
  52. “Generation of Pseudo-Random Quantum States on Actual Quantum Processors” In Entropy 25.4, 2023 DOI: 10.3390/e25040607
  53. Elijah Pelofske “Dataset for Analysis of a Programmable Quantum Annealer as a Random Number Generator” Zenodo, 2024 DOI: 10.5281/zenodo.10583977
  54. “D-Wave Post Processing”, https://web.archive.org/web/20231122203833/https://docs.dwavesys.com/docs/latest/c_qpu_pp.html
  55. “Coherent quantum annealing in a programmable 2,000 qubit Ising chain” In Nature Physics 18.11 Springer ScienceBusiness Media LLC, 2022, pp. 1324–1328 DOI: 10.1038/s41567-022-01741-6
  56. “Quantum critical dynamics in a 5,000-qubit programmable spin glass” In Nature 617.7959 Springer ScienceBusiness Media LLC, 2023, pp. 61–66 DOI: 10.1038/s41586-023-05867-2
  57. “Thermally assisted quantum annealing of a 16-qubit problem” In Nature communications 4.1 Nature Publishing Group UK London, 2013, pp. 1903 DOI: 10.1038/ncomms2920
  58. “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications” Special Publication (NIST SP), National Institute of StandardsTechnology, Gaithersburg, MD, 2010 URL: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
  59. “Array programming with NumPy” In Nature 585.7825 Springer ScienceBusiness Media LLC, 2020, pp. 357–362 DOI: 10.1038/s41586-020-2649-2
  60. C. E. Shannon “A mathematical theory of communication” In The Bell System Technical Journal 27.3, 1948, pp. 379–423 DOI: 10.1002/j.1538-7305.1948.tb01338.x
  61. “Recommendation for the entropy sources used for random bit generation” In NIST Special Publication 800.90B, 2018, pp. 102 DOI: 10.6028/NIST.SP.800-90B
  62. “Charliecloud: Unprivileged Containers for User-Defined Software Stacks in HPC” In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17 Denver, Colorado: Association for Computing Machinery, 2017 DOI: 10.1145/3126908.3126925
  63. John Preskill “Quantum Computing in the NISQ era and beyond” In Quantum 2 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2018, pp. 79 DOI: 10.22331/q-2018-08-06-79
  64. “A view on NIST randomness tests (In)Dependence” In 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2017, pp. 1–4 DOI: 10.1109/ECAI.2017.8166460
  65. “On the interpretation of results from the NIST statistical test suite” In Science and Technology 18.1, 2015, pp. 18–32
  66. Robert G Brown, Dirk Eddelbuettel and David Bauer “Dieharder” In Duke University Physics Department Durham, NC, 2018, pp. 27708–0305

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com