Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Named Entity Inclusion in Abstractive Text Summarization (2307.02570v1)

Published 5 Jul 2023 in cs.CL, cs.AI, cs.LG, and cs.SI

Abstract: We address the named entity omission - the drawback of many current abstractive text summarizers. We suggest a custom pretraining objective to enhance the model's attention on the named entities in a text. At first, the named entity recognition model RoBERTa is trained to determine named entities in the text. After that, this model is used to mask named entities in the text and the BART model is trained to reconstruct them. Next, the BART model is fine-tuned on the summarization task. Our experiments showed that this pretraining approach improves named entity inclusion precision and recall metrics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Factual error correction for abstractive summarization models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6251–6258, Online. Association for Computational Linguistics.
  2. A discourse-aware attention model for abstractive summarization of long documents. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 615–621, New Orleans, Louisiana. Association for Computational Linguistics.
  3. GO FIGURE: A meta evaluation of factuality in summarization. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 478–487, Online. Association for Computational Linguistics.
  4. Don’t stop pretraining: Adapt language models to domains and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8342–8360, Online. Association for Computational Linguistics.
  5. Evaluating the factual consistency of abstractive text summarization. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9332–9346, Online. Association for Computational Linguistics.
  6. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.
  7. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692.
  8. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3219–3232, Brussels, Belgium. Association for Computational Linguistics.
  9. Constrained abstractive summarization: Preserving factual consistency with constrained generation. ArXiv, abs/2010.12723.
  10. On faithfulness and factuality in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1906–1919, Online. Association for Computational Linguistics.
  11. Entity-level factual consistency of abstractive text summarization. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 2727–2733, Online. Association for Computational Linguistics.
  12. Planning with learned entity prompts for abstractive summarization. Transactions of the Association for Computational Linguistics, 9:1475–1492.
  13. Understanding factuality in abstractive summarization with frank: A benchmark for factuality metrics. In NAACL-HLT, pages 4812–4829.
  14. Sparsifying transformer models with trainable representation pooling. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8616–8633, Dublin, Ireland. Association for Computational Linguistics.
  15. Attention is all you need. ArXiv, abs/1706.03762.
  16. PRIMERA: Pyramid-based masked sentence pre-training for multi-document summarization. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5245–5263, Dublin, Ireland. Association for Computational Linguistics.
  17. ERNIE: Enhanced language representation with informative entities. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1441–1451, Florence, Italy. Association for Computational Linguistics.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.