Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Ising CFT and Exact Diagonalization on Icosahedron: The Power of Conformal Perturbation Theory (2307.02540v4)

Published 5 Jul 2023 in hep-th, cond-mat.stat-mech, and cond-mat.str-el

Abstract: We consider the transverse field Ising model in $(2+1)$D, putting 12 spins at the vertices of the regular icosahedron. The model is tiny by the exact diagonalization standards, and breaks rotation invariance. Yet we show that it allows a meaningful comparison to the 3D Ising CFT on $\mathbb{R}\times S2$, by including effective perturbations of the CFT Hamiltonian with a handful of local operators. This extreme example shows the power of conformal perturbation theory in understanding finite $N$ effects in models on regularized $S2$. Its ideal arena of application should be the recently proposed models of fuzzy sphere regularization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. K. Farnsworth, M. A. Luty, and V. Prilepina, “Weyl versus Conformal Invariance in Quantum Field Theory,” JHEP 10 (2017) 170, arXiv:1702.07079 [hep-th].
  2. J. L. Cardy, “Conformal invariance and universality in finite-size scaling,” J. Phys. A 17 (1984) L385–L387.
  3. H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, “Conformal invariance, the central charge, and universal finite-size amplitudes at criticality,” Phys. Rev. Lett. 56 (1986) 742–745.
  4. I. Affleck, “Universal term in the free energy at a critical point and the conformal anomaly,” Phys. Rev. Lett. 56 (1986) 746–748.
  5. J. Cardy (ed.), Finite-Size Scaling. Elsevier, 1988.
  6. R. C. Brower, G. T. Fleming, and H. Neuberger, “Lattice Radial Quantization: 3D Ising,” Phys. Lett. B 721 (2013) 299–305, arXiv:1212.6190 [hep-lat].
  7. R. C. Brower, G. T. Fleming, and H. Neuberger, “Radial Quantization for Conformal Field Theories on the Lattice,” PoS LATTICE2012 (2012) 061, arXiv:1212.1757 [hep-lat].
  8. A.-M. E. Glück, G. T. Fleming, R. C. Brower, V. Ayyar, E. K. Owen, T. G. Raben, and C.-I. Tan, “Computing the Central Charge of the 3D Ising CFT Using Quantum Finite Elements,” PoS LATTICE2022 (2023) 370.
  9. R. C. Brower, G. T. Fleming, A. D. Gasbarro, D. Howarth, T. G. Raben, C.-I. Tan, and E. S. Weinberg, “Radial lattice quantization of 3D ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT field theory,” Phys. Rev. D 104 no. 9, (2021) 094502, arXiv:2006.15636 [hep-lat].
  10. W. Zhu, C. Han, E. Huffman, J. S. Hofmann, and Y.-C. He, “Uncovering Conformal Symmetry in the 3D Ising Transition: State-Operator Correspondence from a Quantum Fuzzy Sphere Regularization,” Phys. Rev. X 13 (2023) 021009.
  11. L. Hu, Y.-C. He, and W. Zhu, “Operator Product Expansion Coefficients of the 3D Ising Criticality via Quantum Fuzzy Sphere,” arXiv:2303.08844 [cond-mat.stat-mech].
  12. C. Han, L. Hu, W. Zhu, and Y.-C. He, “Conformal four-point correlators of the 3D Ising transition via the quantum fuzzy sphere,” arXiv:2306.04681 [cond-mat.stat-mech].
  13. F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, “Precision Islands in the Ising and O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) Models,” JHEP 08 (2016) 036, arXiv:1603.04436 [hep-th].
  14. D. Simmons-Duffin, “The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT,” JHEP 03 (2017) 086, arXiv:1612.08471 [hep-th].
  15. S. Rychkov, D. Simmons-Duffin, and B. Zan, “Non-gaussianity of the critical 3d Ising model,” SciPost Phys. 2 no. 1, (2017) 001, arXiv:1612.02436 [hep-th].
  16. M. Reehorst, “Rigorous bounds on irrelevant operators in the 3d Ising model CFT,” JHEP 09 (2022) 177, arXiv:2111.12093 [hep-th].
  17. B. Lao, “Conformal perturbation theory: 3D Ising model on Icosahedron,”. M2 ICFP internship report, supervised by S. Rychkov, June 2023, 46pp (Paris, France).
  18. S. Sachdev, Quantum Phase Transitions. Cambridge University Press, 2 ed., 2011.
  19. H. W. J. Blöte and Y. Deng, “Cluster Monte Carlo simulation of the transverse Ising model,” Phys. Rev. E 66 (2002) 066110.
  20. M. Schmitt, M. M. Rams, J. Dziarmaga, M. Heyl, and W. H. Zurek, “Quantum phase transition dynamics in the two-dimensional transverse-field Ising model,” Science Advances 8 no. 37, (2022) eabl6850.
  21. D. Poland, V. Prilepina, and P. Tadić, “The five-point bootstrap,” arXiv:2305.08914 [hep-th].
  22. N. Su, “Numerical conformal bootstrap study of all 4pt functions involving σ𝜎\sigmaitalic_σ, ε𝜀\varepsilonitalic_ε, ε⁢’𝜀’\varepsilon’italic_ε ’ at Λ=19Λ19\Lambda=19roman_Λ = 19,”. unpublished.
  23. J. Kang and A. Nicolis, “Platonic solids back in the sky: Icosahedral inflation,” JCAP 03 (2016) 050, arXiv:1509.02942 [hep-th].
Citations (12)

Summary

We haven't generated a summary for this paper yet.