Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Analysis for Restarted Anderson Mixing and Beyond (2307.02062v1)

Published 5 Jul 2023 in math.NA and cs.NA

Abstract: Anderson mixing (AM) is a classical method that can accelerate fixed-point iterations by exploring historical information. Despite the successful application of AM in scientific computing, the theoretical properties of AM are still under exploration. In this paper, we study the restarted version of the Type-I and Type-II AM methods, i.e., restarted AM. With a multi-step analysis, we give a unified convergence analysis for the two types of restarted AM and justify that the restarted Type-II AM can locally improve the convergence rate of the fixed-point iteration. Furthermore, we propose an adaptive mixing strategy by estimating the spectrum of the Jacobian matrix. If the Jacobian matrix is symmetric, we develop the short-term recurrence forms of restarted AM to reduce the memory cost. Finally, experimental results on various problems validate our theoretical findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.