Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instantaneous Wireless Robotic Node Localization Using Collaborative Direction of Arrival (2307.01956v1)

Published 4 Jul 2023 in cs.RO and cs.NI

Abstract: Localizing mobile robotic nodes in indoor and GPS-denied environments is a complex problem, particularly in dynamic, unstructured scenarios where traditional cameras and LIDAR-based sensing and localization modalities may fail. Alternatively, wireless signal-based localization has been extensively studied in the literature yet primarily focuses on fingerprinting and feature-matching paradigms, requiring dedicated environment-specific offline data collection. We propose an online robot localization algorithm enabled by collaborative wireless sensor nodes to remedy these limitations. Our approach's core novelty lies in obtaining the Collaborative Direction of Arrival (CDOA) of wireless signals by exploiting the geometric features and collaboration between wireless nodes. The CDOA is combined with the Expectation Maximization (EM) and Particle Filter (PF) algorithms to calculate the Gaussian probability of the node's location with high efficiency and accuracy. The algorithm relies on RSSI-only data, making it ubiquitous to resource-constrained devices. We theoretically analyze the approach and extensively validate the proposed method's consistency, accuracy, and computational efficiency in simulations, real-world public datasets, as well as real robot demonstrations. The results validate the method's real-time computational capability and demonstrate considerably-high centimeter-level localization accuracy, outperforming relevant state-of-the-art localization approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and technologies,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019.
  2. A. Canedo-Rodríguez, V. Alvarez-Santos, C. V. Regueiro, R. Iglesias, S. Barro, and J. Presedo, “Particle filter robot localisation through robust fusion of laser, wifi, compass, and a network of external cameras,” Information Fusion, vol. 27, pp. 170–188, 2016.
  3. C. Rizzo, T. Seco, J. Espelosín, F. Lera, and J. L. Villarroel, “An alternative approach for robot localization inside pipes using rf spatial fadings,” Robotics and Autonomous Systems, vol. 136, p. 103702, 2021.
  4. E. Latif and R. Parasuraman, “Dgorl: Distributed graph optimization based relative localization of multi-robot systems,” arXiv preprint arXiv:2210.01662, 2022.
  5. A. Motroni, A. Buffi, and P. Nepa, “A survey on indoor vehicle localization through rfid technology,” IEEE Access, vol. 9, 01 2021.
  6. S. Luo, J. Kim, R. Parasuraman, J. H. Bae, E. T. Matson, and B.-C. Min, “Multi-robot rendezvous based on bearing-aided hierarchical tracking of network topology,” Ad Hoc Networks, vol. 86, pp. 131–143, 2019.
  7. R. Parasuraman and B.-C. Min, “Consensus control of distributed robots using direction of arrival of wireless signals,” in Distributed Autonomous Robotic Systems.   Springer, 2019, pp. 17–34.
  8. R. Parasuraman, P. Ogren, and B.-C. Min, “Kalman filter based spatial prediction of wireless connectivity for autonomous robots and connected vehicles,” in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall).   IEEE, 2018, pp. 1–5.
  9. S. Sadowski, P. Spachos, and K. N. Plataniotis, “Memoryless techniques and wireless technologies for indoor localization with the internet of things,” IEEE Internet of Things Journal, vol. 7, no. 11, pp. 10 996–11 005, 2020.
  10. Y. Tao and L. Zhao, “A novel system for wifi radio map automatic adaptation and indoor positioning,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10 683–10 692, 2018.
  11. B. Yang, L. Guo, R. Guo, M. Zhao, and T. Zhao, “A novel trilateration algorithm for rssi-based indoor localization,” IEEE Sensors Journal, vol. 20, no. 14, pp. 8164–8172, 2020.
  12. Z.-M. Wang and Y. Zheng, “The study of the weighted centroid localization algorithm based on rssi,” in 2014 International Conference on Wireless Communication and Sensor Network, 2014, pp. 276–279.
  13. N. Podevijn, D. Plets, J. Trogh, A. Karaagac, J. Haxhibcqiri, J. Hoebeke, L. Martens, P. Suanet, and W. Joseph, “Performance comparison of rss algorithms for indoor localization in large open environments,” in 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2018, pp. 1–6.
  14. W. Xue, w. qiu, X. Hua, and K. Yu, “Improved wi-fi rssi measurement for indoor localization,” IEEE Sensors Journal, vol. PP, pp. 1–1, 01 2017.
  15. F. Zafari, I. Papapanagiotou, and T. J. Hacker, “A novel bayesian filtering based algorithm for rssi-based indoor localization,” in 2018 IEEE International Conference on Communications (ICC).   IEEE, 2018, pp. 1–7.
  16. H. Wang, L. Wan, M. Dong, K. Ota, and X. Wang, “Assistant vehicle localization based on three collaborative base stations via sbl-based robust doa estimation,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5766–5777, 2019.
  17. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating system,” in ICRA workshop on open source software, vol. 3, no. 3.2.   Kobe, Japan, 2009, p. 5.
  18. F. Liu, J. Liu, Y. Yin, W. Wang, D. Hu, P. Chen, and Q. Niu, “Survey on wifi-based indoor positioning techniques,” IET Communications, vol. 14, no. 9, pp. 1372–1383, 2020.
  19. M. Pajovic, P. Orlik, T. Koike-Akino, K. J. Kim, H. Aikawa, and T. Hori, “An unsupervised indoor localization method based on received signal strength (rss) measurements,” in 2015 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2015, pp. 1–6.
  20. S. Subedi and J.-Y. Pyun, “A survey of smartphone-based indoor positioning system using rf-based wireless technologies,” Sensors, vol. 20, no. 24, 2020.
  21. M. Passafiume, S. Maddio, M. Lucarelli, and A. Cidronali, “An enhanced triangulation algorithm for a distributed rssi-doa positioning system,” in 2016 European Radar Conference (EuRAD), 2016, pp. 185–188.
  22. J. Wang, J. G. Hwang, J. Peng, J. Park, and J. G. Park, “Gaussian filtered rssi-based indoor localization in wlan using bootstrap filter,” in 2021 International Conference on Electronics, Information, and Communication (ICEIC).   IEEE, 2021, pp. 1–4.
  23. B. Pinto, R. Barreto, E. Souto, and H. Oliveira, “Robust rssi-based indoor positioning system using k-means clustering and bayesian estimation,” IEEE Sensors Journal, vol. 21, no. 21, pp. 24 462–24 470, 2021.
  24. A. Mackey, P. Spachos, L. Song, and K. N. Plataniotis, “Improving ble beacon proximity estimation accuracy through bayesian filtering,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3160–3169, 2020.
  25. P. Wojcicki, T. Zientarski, M. Charytanowicz, and E. Lukasik, “Estimation of the path-loss exponent by bayesian filtering method,” Sensors, vol. 21, no. 6, p. 1934, 2021.
  26. N. Jadhav, W. Wang, D. Zhang, S. Kumar, and S. Gil, “Toolbox release: A wifi-based relative bearing sensor for robotics,” arXiv preprint arXiv:2109.12205, 2021.
  27. Q. Song, S. Guo, X. Liu, and Y. Yang, “Csi amplitude fingerprinting-based nb-iot indoor localization,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1494–1504, 2017.
  28. X. Wang, L. Gao, and S. Mao, “Csi phase fingerprinting for indoor localization with a deep learning approach,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1113–1123, 2016.
  29. D. Arbula and S. Ljubic, “Indoor localization based on infrared angle of arrival sensor network,” Sensors, vol. 20, no. 21, 2020.
  30. A. Hassani, A. Bertrand, and M. Moonen, “Cooperative integrated noise reduction and node-specific direction-of-arrival estimation in a fully connected wireless acoustic sensor network,” Signal Processing, vol. 107, pp. 68–81, 2015.
  31. J. Xu, M. Ma, and C. L. Law, “Cooperative angle-of-arrival position localization,” Measurement, vol. 59, pp. 302–313, 2015.
  32. A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami, M. A. Al-Ammar, and H. S. Al-Khalifa, “Ultra wideband indoor positioning technologies: Analysis and recent advances,” Sensors, vol. 16, no. 5, p. 707, 2016.
  33. B. Yang, J. Li, Z. Shao, and H. Zhang, “Robust uwb indoor localization for nlos scenes via learning spatial-temporal features,” IEEE Sensors Journal, vol. 22, no. 8, pp. 7990–8000, 2022.
  34. M. Ridolfi, J. Fontaine, B. V. Herbruggen, W. Joseph, J. Hoebeke, and E. D. Poorter, “Uwb anchor nodes self-calibration in nlos conditions: A machine learning and adaptive phy error correction approach,” Wireless Networks, vol. 27, no. 4, pp. 3007–3023, 2021.
  35. C. Wang, A. Xu, J. Kuang, X. Sui, Y. Hao, and X. Niu, “A high-accuracy indoor localization system and applications based on tightly coupled uwb/ins/floor map integration,” IEEE Sensors Journal, vol. 21, no. 16, pp. 18 166–18 177, 2021.
  36. M. Celaya-Echarri, L. Azpilicueta, P. Lopez-Iturri, I. Picallo, E. Aguirre, J. J. Astrain, J. Villadangos, and F. Falcone, “Radio wave propagation and wsn deployment in complex utility tunnel environments,” Sensors, vol. 20, no. 23, p. 6710, 2020.
  37. M. Starks, A. Gupta, S. S. OV, and R. Parasuraman, “Heroswarm: Fully-capable miniature swarm robot hardware design with open-source ros support,” in 2023 IEEE/SICE International Symposium on System Integration (SII).   IEEE, 2023, pp. 1–7.
  38. R. Parashar and R. Parasuraman, “Particle filter based localization of access points using direction of arrival on mobile robots,” in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall).   IEEE, 2020, pp. 1–6.
  39. J. N. Twigg, J. R. Fink, L. Y. Paul, and B. M. Sadler, “Rss gradient-assisted frontier exploration and radio source localization,” in 2012 IEEE International Conference on Robotics and Automation.   IEEE, 2012, pp. 889–895.
  40. P. Ranganathan and K. Nygard, “Time synchronization in wireless sensor networks: A survey,” Int. J. UbiComp, vol. 1, no. 2, pp. 92–102, 2010.
  41. W. Fang, W. Zhang, W. Yang, Z. Li, W. Gao, and Y. Yang, “Trust management-based and energy efficient hierarchical routing protocol in wireless sensor networks,” Digital Communications and Networks, vol. 7, no. 4, pp. 470–478, 2021.
  42. R. Parasuraman, T. Fabry, K. Kershaw, and M. Ferre, “Spatial sampling methods for improved communication for wireless relay robots,” in 2013 International Conference on Connected Vehicles and Expo (ICCVE).   IEEE, 2013, pp. 874–880.
  43. R. Parasuraman, T. Fabry, L. Molinari, K. Kershaw, M. Di Castro, A. Masi, and M. Ferre, “A multi-sensor rss spatial sensing-based robust stochastic optimization algorithm for enhanced wireless tethering,” Sensors, vol. 14, no. 12, pp. 23 970–24 003, 2014.
  44. X. Li, H. Sun, L. Jiang, Y. Shi, and Y. Wu, “Modified particle filtering algorithm for single acoustic vector sensor doa tracking,” Sensors, vol. 15, no. 10, pp. 26 198–26 211, 2015.
  45. M. Pajovic, P. Orlik, T. Koike-Akino, K. J. Kim, H. Aikawa, and T. Hori, “An unsupervised indoor localization method based on received signal strength (rss) measurements,” in 2015 IEEE Global Communications Conference (GLOBECOM), 2015.
  46. F. Penna and D. Cabric, “Bounds and tradeoffs for cooperative doa-only localization of primary users,” in 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011.   IEEE, 2011, pp. 1–5.
  47. D. Han, D. G. Andersen, M. Kaminsky, K. Papagiannaki, and S. Seshan, “Access point localization using local signal strength gradient,” in International Conference on Passive and active network measurement.   Springer, 2009, pp. 99–108.
  48. G. Verma, F. T. Dagefu, B. M. Sadler, and J. Twigg, “Direction of arrival estimation with the received signal strength gradient,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10 856–10 870, 2018.
  49. J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detection,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2016, pp. 4193–4198.
  50. Q. Dong and W. Dargie, “Evaluation of the reliability of rssi for indoor localization,” in 2012 International Conference on Wireless Communications in Underground and Confined Areas, ICWCUCA 2012, 08 2012, pp. 1–6.
  51. D. Manolakis, “Efficient solution and performance analysis of 3-d position estimation by trilateration,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 4, pp. 1239–1248, 1996.
Citations (2)

Summary

We haven't generated a summary for this paper yet.