Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Minimax rates for latent position estimation in the generalized random dot product graph (2307.01942v1)

Published 4 Jul 2023 in math.ST and stat.TH

Abstract: Latent space models play an important role in the modeling and analysis of network data. Under these models, each node has an associated latent point in some (typically low-dimensional) geometric space, and network formation is driven by this unobserved geometric structure. The random dot product graph (RDPG) and its generalization (GRDPG) are latent space models under which this latent geometry is taken to be Euclidean. These latent vectors can be efficiently and accurately estimated using well-studied spectral embeddings. In this paper, we develop a minimax lower bound for estimating the latent positions in the RDPG and the GRDPG models under the two-to-infinity norm, and show that a particular spectral embedding method achieves this lower bound. We also derive a minimax lower bound for the related task of subspace estimation under the two-to-infinity norm that holds in general for low-rank plus noise network models, of which the RDPG and GRDPG are special cases. The lower bounds are achieved by a novel construction based on Hadamard matrices.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube