Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Nonrelativistic spatiotemporal quantum reference frames (2307.01874v3)

Published 4 Jul 2023 in quant-ph

Abstract: Quantum reference frames have attracted renewed interest recently, as their exploration is relevant and instructive in many areas of quantum theory. Among the different types, position and time reference frames have captivated special attention. Here, we introduce and analyze a nonrelativistic framework in which each system contains an internal clock, in addition to its external (spatial) degree of freedom and, hence, can be used as a spatiotemporal quantum reference frame. We present expressions for expectation values and variances of relevant observables in different perspectives, as well as relations between these quantities in different perspectives in scenarios with no interactions. In particular, we show that even in these simple scenarios, the relative uncertainty between clocks affects the relative spatial spread of the systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. J. Hilgevoord, Time in quantum mechanics, Am. J. Phys. 70, 301 (2002).
  2. J. Hilgevoord, Time in quantum mechanics: a story of confusion, Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. Mod. Phys. 36, 29 (2005).
  3. W. Pauli, Die allgemeinen prinzipien der wellenmechanik, in Quantentheorie (Springer, Berlin, Heidelberg, 1933) pp. 83–272.
  4. Y. Aharonov and D. Bohm, Time in the quantum theory and the uncertainty relation for time and energy, Phys. Rev. 122, 1649 (1961).
  5. E. C. G. Stueckelberg, Remarque à propos de la création de paires de particules en theorie de relativité, Helv. Phys. Acta 14, 588 (1941).
  6. L. P. Horwitz and C. Piron, Relativistic dynamics, Helv. Phys. Acta 46, 316 (1973).
  7. J. R. Fanchi and R. E. Collins, Quantum mechanics of relativistic spinless particles, Found. Phys. 8, 851 (1978).
  8. L. P. Horwitz, Relativistic Quantum Mechanics, Fundamental Theories of Physics (Springer, Dordrecht, NL, 2015).
  9. R. Arshansky and L. P. Horwitz, The quantum relativistic two‐body bound state. i. the spectrum, J. Math. Phys. 30, 66 (1989).
  10. M. Suleymanov, L. Horwitz, and A. Yahalom, Second quantization of a covariant relativistic spacetime string in Steuckelberg–Horwitz–Piron theory, Front. Phys. (Beijing) 12, 121103 (2017).
  11. D. N. Page and W. K. Wootters, Evolution without evolution: Dynamics described by stationary observables, Phys. Rev. D 27, 2885 (1983).
  12. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum time, Phys. Rev. D 92, 045033 (2015).
  13. C. Marletto and V. Vedral, Evolution without evolution and without ambiguities, Phys. Rev. D 95, 043510 (2017).
  14. A. R. H. Smith and M. Ahmadi, Quantizing time: interacting clocks and systems, Quantum 3, 160 (2019).
  15. N. L. Diaz and R. Rossignoli, History state formalism for Dirac’s theory, Phys. Rev. D 99, 045008 (2019).
  16. P. A. Höhn and A. Vanrietvelde, How to switch between relational quantum clocks, New J. Phys. 22, 123048 (2020).
  17. A. R. H. Smith and M. Ahmadi, Quantum clocks observe classical and quantum time dilation, Nat. Commun. 11, 5360 (2020).
  18. R. S. Carmo and D. O. Soares-Pinto, Quantifying resources for the Page-Wootters mechanism: Shared asymmetry as relative entropy of entanglement, Phys. Rev. A 103, 052420 (2021).
  19. A. Ballesteros, F. Giacomini, and G. Gubitosi, The group structure of dynamical transformations between quantum reference frames, Quantum 5, 470 (2021).
  20. P. A. Höhn, A. R. H. Smith, and M. P. E. Lock, Trinity of relational quantum dynamics, Phys. Rev. D 104, 066001 (2021).
  21. I. L. Paiva, A. C. Lobo, and E. Cohen, Flow of time during energy measurements and the resulting time-energy uncertainty relations, Quantum 6, 683 (2022a).
  22. I. L. Paiva, M. Nowakowski, and E. Cohen, Dynamical nonlocality in quantum time via modular operators, Phys. Rev. A 105, 042207 (2022b).
  23. E. Adlam, Watching the clocks: Interpreting the Page-Wootters formalism and the internal quantum reference frame programme, Found. Phys. 52, 99 (2022).
  24. M. Altaie, D. Hodgson, and A. Beige, Time and quantum clocks: A review of recent developments, Front. Phys. 10, 460 (2022).
  25. Y. Aharonov and L. Susskind, Charge superselection rule, Phys. Rev. 155, 1428 (1967).
  26. Y. Aharonov and T. Kaufherr, Quantum frames of reference, Phys. Rev. D 30, 368 (1984).
  27. C. Rovelli, Quantum reference systems, Class. Quantum Gravity 8, 317 (1991).
  28. S. T. Pereira and R. M. Angelo, Galilei covariance and einstein’s equivalence principle in quantum reference frames, Phys. Rev. A 91, 022107 (2015).
  29. L. Loveridge, P. Busch, and T. Miyadera, Relativity of quantum states and observables, Europhys. Lett. 117, 40004 (2017).
  30. F. Giacomini, E. Castro-Ruiz, and Č. Brukner, Quantum mechanics and the covariance of physical laws in quantum reference frames, Nat. Commun. 10, 494 (2019).
  31. J. M. Yang, Switching Quantum Reference Frames for Quantum Measurement, Quantum 4, 283 (2020).
  32. E. Castro-Ruiz and O. Oreshkov, Relative subsystems and quantum reference frame transformations, arXiv:2110.13199  (2021).
  33. D. Giulini and D. Marolf, On the generality of refined algebraic quantization, Class. Quantum Gravity 16, 2479 (1999).
  34. D. Giulini, Group averaging and refined algebraic quantization, Nucl. Phys. B. 88, 385 (2000).
  35. D. Marolf, Group averaging and refined algebraic quantization: Where are we now?, in The Ninth Marcel Grossmann Meeting (World Scientific, 2002) pp. 1348–1349.
  36. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, UK, 2007).
  37. M. Henneaux and C. Teitelboim, Quantization of gauge systems (Princeton University Press, Princeton, NJ, 1992).
  38. B. S. DeWitt, Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160, 1113 (1967).
  39. L. Mandelstam and I. G. Tamm, The uncertainty relation between energy and time in non-relativistic quantum mechanics, J. Phys. (USSR) 9, 249 (1945).
  40. A. Messiah, Quantum Mechanics (North-Holland Publishing Company, Amsterdam, 1961) pp. 319–320.
  41. Y. Aharonov and J. L. Safko, Measurement of noncanonical variables, Ann. Phys. 91, 279 (1975).
  42. Y. Aharonov and D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley-VCH, Weinheim, 2005) pp. 101–102.
  43. F. Giacomini, Spacetime quantum reference frames and superpositions of proper times, Quantum 5, 508 (2021).
  44. T. Favalli and A. Smerzi, A model of quantum spacetime, AVS Quantum Sci. 4, 044403 (2022).
  45. V. Giovannetti, S. Lloyd, and L. Maccone, Geometric event-based quantum mechanics, New J. Phys. 25, 023027 (2023).
  46. J. Barbour, T. Koslowski, and F. Mercati, Identification of a gravitational arrow of time, Phys. Rev. Lett. 113, 181101 (2014).
  47. A. Vanrietvelde, P. A. Höhn, and F. Giacomini, Switching quantum reference frames in the N-body problem and the absence of global relational perspectives, Quantum 7, 1088 (2023).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.