Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Restricted First-Order Counting Properties on Nowhere Dense Classes and Beyond (2307.01832v1)

Published 4 Jul 2023 in cs.LO, cs.CC, cs.DM, and cs.DS

Abstract: It is known that first-order logic with some counting extensions can be efficiently evaluated on graph classes with bounded expansion, where depth-$r$ minors have constant density. More precisely, the formulas are $\exists x_1 ... x_k #y \varphi(x_1,...,x_k, y)>N$, where $\varphi$ is an FO-formula. If $\varphi$ is quantifier-free, we can extend this result to nowhere dense graph classes with an almost linear FPT run time. Lifting this result further to slightly more general graph classes, namely almost nowhere dense classes, where the size of depth-$r$ clique minors is subpolynomial, is impossible unless FPT=W[1]. On the other hand, in almost nowhere dense classes we can approximate such counting formulas with a small additive error. Note those counting formulas are contained in FOC({<}) but not FOC1(P). In particular, it follows that partial covering problems, such as partial dominating set, have fixed parameter algorithms on nowhere dense graph classes with almost linear running time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Implicit branching and parameterized partial cover problems. J. Comput. Syst. Sci., 77(6):1159–1171, 2011. doi:10.1016/j.jcss.2010.12.002.
  2. Infinitely-often autoreducible sets. SIAM Journal on Computing, 36(3):595–608, 2006.
  3. Leonard Berman. On the structure of complete sets: Almost everywhere complexity and infinitely often speedup. In 17th Annual Symposium on Foundations of Computer Science (sfcs 1976), pages 76–80, 1976. doi:10.1109/SFCS.1976.22.
  4. Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
  5. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000. doi:10.1007/s002249910009.
  6. Locally excluding a minor. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages 270–279. IEEE Computer Society, 2007. doi:10.1109/LICS.2007.31.
  7. Domination problems in nowhere-dense classes. In Ravi Kannan and K. Narayan Kumar, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India, volume 4 of LIPIcs, pages 157–168. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2315.
  8. Structural sparsity of complex networks: Bounded expansion in random models and real-world graphs. J. Comput. Syst. Sci., 105:199–241, 2019. doi:10.1016/j.jcss.2019.05.004.
  9. Parameterized Complexity. Monographs in Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.
  10. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.
  11. Approximate evaluation of first-order counting queries. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1720–1739. SIAM, 2021. doi:10.1137/1.9781611976465.104.
  12. First-order queries on structures of bounded degree are computable with constant delay. ACM Trans. Comput. Log., 8(4):21, 2007. doi:10.1145/1276920.1276923.
  13. Enumerating answers to first-order queries over databases of low degree. Log. Methods Comput. Sci., 18(2), 2022. doi:10.46298/lmcs-18(2:7)2022.
  14. Z. Dvořák. Asymptotical Structure of Combinatorial Objects. PhD thesis, Charles University, Faculty of Mathematics and Physics, 2007.
  15. Testing first-order properties for subclasses of sparse graphs. J. ACM, 60(5):36:1–36:24, 2013. doi:10.1145/2499483.
  16. Deciding first-order properties of locally tree-decomposable structures. J. ACM, 48(6):1184–1206, 2001. doi:10.1145/504794.504798.
  17. Lower bounds on the complexity of MSO1 model-checking. Journal of Computer and System Sciences, 80(1):180–194, 2014.
  18. Parameterized complexity for domination problems on degenerate graphs. In Hajo Broersma, Thomas Erlebach, Tom Friedetzky, and Daniël Paulusma, editors, Graph-Theoretic Concepts in Computer Science, 34th International Workshop, WG 2008, Durham, UK, June 30 - July 2, 2008. Revised Papers, volume 5344 of Lecture Notes in Computer Science, pages 195–205, 2008. doi:10.1007/978-3-540-92248-3_18.
  19. Martin Grohe. Generalized model-checking problems for first-order logic. In Afonso Ferreira and Horst Reichel, editors, STACS 2001, 18th Annual Symposium on Theoretical Aspects of Computer Science, Dresden, Germany, February 15-17, 2001, Proceedings, volume 2010 of Lecture Notes in Computer Science, pages 12–26. Springer, 2001. doi:10.1007/3-540-44693-1_2.
  20. Coloring and covering nowhere dense graphs. SIAM J. Discret. Math., 32(4):2467–2481, 2018. doi:10.1137/18M1168753.
  21. Characterisations of nowhere dense graphs (invited talk). In Anil Seth and Nisheeth K. Vishnoi, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India, volume 24 of LIPIcs, pages 21–40. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.FSTTCS.2013.21.
  22. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.
  23. First-order query evaluation with cardinality conditions. In Jan Van den Bussche and Marcelo Arenas, editors, Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 253–266. ACM, 2018. doi:10.1145/3196959.3196970.
  24. First-order queries on classes of structures with bounded expansion. Log. Methods Comput. Sci., 16(1), 2020. doi:10.23638/LMCS-16(1:25)2020.
  25. Orderings on graphs and game coloring number. Order, 20(3):255–264, 2003. doi:10.1023/B:ORDE.0000026489.93166.cb.
  26. Partial vs. complete domination: t𝑡titalic_t-dominating set. In Jan van Leeuwen, Giuseppe F. Italiano, Wiebe van der Hoek, Christoph Meinel, Harald Sack, and Frantisek Plasil, editors, SOFSEM 2007: Theory and Practice of Computer Science, 33rd Conference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic, January 20-26, 2007, Proceedings, volume 4362 of Lecture Notes in Computer Science, pages 367–376. Springer, 2007. doi:10.1007/978-3-540-69507-3_31.
  27. Lower bounds for the complexity of monadic second-order logic. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 189–198. IEEE Computer Society, 2010. doi:10.1109/LICS.2010.39.
  28. First-order logic with counting. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005133.
  29. Grad and classes with bounded expansion I. decompositions. Eur. J. Comb., 29(3):760–776, 2008. doi:10.1016/j.ejc.2006.07.013.
  30. Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-27875-4.
  31. Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. European Journal of Combinatorics, 32(4):600 – 617, 2011. URL: http://www.sciencedirect.com/science/article/pii/S0195669811000151, doi:https://doi.org/10.1016/j.ejc.2011.01.006.
  32. Lecture notes for the course “Sparsity” given at Faculty of Mathematics, Informatics, and Mechanics of the University of Warsaw, Winter semesters 2017/18 and 2019/20. Available https://www.mimuw.edu.pl/~mp248287/sparsity2.
  33. Detlef Seese. Linear time computable problems and first-order descriptions. Math. Struct. Comput. Sci., 6(6):505–526, 1996. doi:10.1017/s0960129500070079.
  34. Sebastian Siebertz. Nowhere Dense Classes of Graphs: Characterisations and Algorithmic Meta-Theorems. PhD thesis, TU Berlin, 2016.
  35. Alexandre Vigny. Dynamic query evaluation over structures with low degree. CoRR, abs/2010.02982, 2020. URL: https://arxiv.org/abs/2010.02982, arXiv:2010.02982.
  36. Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discret. Math., 309(18):5562–5568, 2009. doi:10.1016/j.disc.2008.03.024.
Citations (1)

Summary

We haven't generated a summary for this paper yet.