Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Difference Equations with Structured Grammatical Evolution for Postprandial Glycaemia Prediction (2307.01238v1)

Published 3 Jul 2023 in cs.LG and cs.AI

Abstract: People with diabetes must carefully monitor their blood glucose levels, especially after eating. Blood glucose regulation requires a proper combination of food intake and insulin boluses. Glucose prediction is vital to avoid dangerous post-meal complications in treating individuals with diabetes. Although traditional methods, such as artificial neural networks, have shown high accuracy rates, sometimes they are not suitable for developing personalised treatments by physicians due to their lack of interpretability. In this study, we propose a novel glucose prediction method emphasising interpretability: Interpretable Sparse Identification by Grammatical Evolution. Combined with a previous clustering stage, our approach provides finite difference equations to predict postprandial glucose levels up to two hours after meals. We divide the dataset into four-hour segments and perform clustering based on blood glucose values for the twohour window before the meal. Prediction models are trained for each cluster for the two-hour windows after meals, allowing predictions in 15-minute steps, yielding up to eight predictions at different time horizons. Prediction safety was evaluated based on Parkes Error Grid regions. Our technique produces safe predictions through explainable expressions, avoiding zones D (0.2% average) and E (0%) and reducing predictions on zone C (6.2%). In addition, our proposal has slightly better accuracy than other techniques, including sparse identification of non-linear dynamics and artificial neural networks. The results demonstrate that our proposal provides interpretable solutions without sacrificing prediction accuracy, offering a promising approach to glucose prediction in diabetes management that balances accuracy, interpretability, and computational efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. V. Felizardo, N. M. Garcia, N. Pombo, I. Megdiche, Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – a systematic literature review, Artificial Intelligence in Medicine 118 (2021) 102120. doi:https://doi.org/10.1016/j.artmed.2021.102120. URL https://www.sciencedirect.com/science/article/pii/S0933365721001135
  2. doi:https://doi.org/10.1016/j.asoc.2021.107609. URL https://www.sciencedirect.com/science/article/pii/S1568494621005305
  3. doi:10.3390/s21217090. URL https://www.mdpi.com/1424-8220/21/21/7090
  4. doi:10.1007/978-3-319-78717-6_15. URL https://doi.org/10.1007/978-3-319-78717-6_15
  5. doi:10.1017/9781009089517.
  6. doi:10.1007/978-1-4614-1770-5_13.
  7. V. Felizardo, N. M. Garcia, N. Pombo, I. Megdiche, Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – a systematic literature review, Artificial Intelligence in Medicine 2021 (102120) (2021) 102120–102120. doi:10.1016/j.artmed.2021.102120.
  8. doi:10.1109/TBME.2021.3103127.
  9. doi:10.1109/SM2C.2017.8071825.
  10. doi:10.1109/TBME.2012.2188893.
  11. doi:10.1109/TMBMC.2016.2633265.
  12. doi:doi:10.1515/pac-2022-0202. URL https://doi.org/10.1515/pac-2022-0202
  13. doi:10.1145/3321707.3321782. URL https://doi.org/10.1145/3321707.3321782
  14. doi:10.1145/2330784.2330846. URL https://doi.org/10.1145/2330784.2330846
  15. doi:10.1109/TEVC.2014.2362729.
  16. doi:10.1145/2908812.2908898. URL https://doi.org/10.1145/2908812.2908898
  17. arXiv:https://direct.mit.edu/artl/article-pdf/28/4/479/2043352/artl_a_00374.pdf, doi:10.1162/artl_a_00374. URL https://doi.org/10.1162/artl_a_00374
  18. doi:10.1007/BF02353538. URL https://doi.org/10.1007/BF02353538
  19. Z. C. Lipton, The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery., Queue 16 (3) (2018) 31–57. doi:10.1145/3236386.3241340. URL https://doi.org/10.1145/3236386.3241340
  20. doi:10.3389/fdata.2021.688969. URL https://www.frontiersin.org/articles/10.3389/fdata.2021.688969
Citations (3)

Summary

We haven't generated a summary for this paper yet.