Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Assessment of the Utilization of Quadruped Robots in Pharmaceutical Research and Development Laboratories (2307.01101v1)

Published 3 Jul 2023 in cs.RO

Abstract: Drug development is becoming more and more complex and resource-intensive. To reduce the costs and the time-to-market, the pharmaceutical industry employs cutting-edge automation solutions. Supportive robotics technologies, such as stationary and mobile manipulators, exist in various laboratory settings. However, they still lack the mobility and dexterity to navigate and operate in human-centered environments. We evaluate the feasibility of quadruped robots for the specific use case of remote inspection, utilizing the out-of-the-box capabilities of Boston Dynamics' Spot platform. We also provide an outlook on the newest technological advancements and the future applications these are anticipated to enable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. S. Carney, “Drug Discovery Today – Highlights of 2012,” Drug Discovery Today, vol. 17, pp. 1088–1102, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.drudis.2012.05.007
  2. A. Domokos, B. Nagy, B. Szilágyi, G. Marosi, and Z. K. Nagy, “Integrated Continuous Pharmaceutical Technologies - A Review,” Organic Process Research and Development, vol. 25, no. 4, pp. 721–739, 4 2021.
  3. K. Olsen, “The first 110 years of laboratory automation: Technologies, applications, and the creative scientist,” Journal of Laboratory Automation, vol. 17, no. 6, pp. 469–480, 12 2012.
  4. A. Khamis, J. Meng, J. Wang, A. T. Azar, E. Prestes, H. Li, I. A. Hameed, A. Takács, I. J. Rudas, and T. Haidegger, “Robotics and Intelligent Systems Against a Pandemic,” Acta Polytechnica Hungarica, vol. 18, no. 5, pp. 13–35, 2021.
  5. F. Kong, L. Yuan, Y. F. Zheng, and W. Chen, “Automatic liquid handling for life science: A critical review of the current state of the art,” Journal of Laboratory Automation, vol. 17, no. 3, pp. 169–185, 6 2012.
  6. K. Thurow, “System Concepts for Robots in Life Science Applications,” Applied Sciences (Switzerland), vol. 12, no. 7, 4 2022.
  7. A. Abduljalil, “An intelligent multi-floor mobile robot transportation system in life science laboratories,” Ph.D. dissertation, University of Rostock, 2019.
  8. J. Pages, L. Marchionni, and F. Ferro, “TIAGo: the modular robot that adapts to different research needs,” PAL Robotics S.L., p. 4, 2016.
  9. M. Štancel, J. Hurtuk, M. Hulič, and J. Červeňák, “Indoor Atlas Service as a Tool for Building an Interior Navigation System,” Acta Polytechnica Hungarica, vol. 18, no. 9, pp. 87–110, 2021. [Online]. Available: http://acta.uni-obuda.hu/Stancel_Hurtuk_Hulic_Cervenak_116.pdf
  10. S. Kleine-Wechelmann, K. Bastiaanse, M. Freundel, and C. Becker-Asano, “Designing the mobile robot Kevin for a life science laboratory,” in RO-MAN 2022 - 31st IEEE International Conference on Robot and Human Interactive Communication: Social, Asocial, and Antisocial Robots.   Institute of Electrical and Electronics Engineers Inc., 2022, pp. 870–875.
  11. “Spot® - The Agile Mobile Robot | Boston Dynamics.” [Online]. Available: https://www.bostondynamics.com/products/spot
  12. G. M. Atmeh, I. Ranatunga, D. O. Popa, K. Subbarao, F. Lewis, and P. Rowe, “Implementation of an adaptive, model free, learning controller on the Atlas robot,” Proceedings of the American Control Conference, pp. 2887–2892, 2014.
  13. E. Ackerman, “A Robot for the Worst Job in the Warehouse: Boston Dynamics’ Stretch can move 800 heavy boxes per hour,” IEEE Spectrum, vol. 59, no. 1, pp. 50–51, 1 2022.
  14. “Stretch™ | Boston Dynamics.” [Online]. Available: https://www.bostondynamics.com/products/stretch
  15. “Spot anatomy.” [Online]. Available: https://support.bostondynamics.com/s/article/Spot-anatomy
  16. “Payloads | Boston Dynamics.” [Online]. Available: https://www.bostondynamics.com/products/spot/payloads
  17. “Your Guide to Automating Industrial Inspection Putting agile mobile robots to work for hazardous and tedious jobs.” [Online]. Available: https://campaigns.bostondynamics.com/spot/guide-to-industrial-inspection-ebook/
  18. “Quadruped robot takes over inspection tasks in industrial plants | GlobalSpec.” [Online]. Available: https://insights.globalspec.com/article/16434/quadruped-robot-takes-over-inspection-tasks-in-industrial-plants
  19. “Radiation Resiliency of the Spot Robot Platform.” [Online]. Available: https://www.bostondynamics.com/resources/whitepaper/radiation-resiliency-spot-robot-platform
  20. “The Benefits of Flexible Autonomy on Construction Sites.” [Online]. Available: https://resources.bostondynamics.com/benefits-flexible-autonomy-construction
  21. S. Halder, K. Afsari, E. Chiou, R. Patrick, and K. A. Hamed, “Construction inspection & monitoring with quadruped robots in future human-robot teaming: A preliminary study,” Journal of Building Engineering, vol. 65, p. 105814, 4 2023.
  22. Z. Chen, T. Fan, X. Zhao, J. Liang, C. Shen, H. Chen, D. Manocha, J. Pan, and W. Zhang, “Autonomous Social Distancing in Urban Environments Using a Quadruped Robot,” IEEE Access, vol. 9, pp. 8392–8403, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9316173
  23. I. Boston Dynamics, “Healthcare Applications of Mobile Robotics during the COVID-19 Pandemic Response.” [Online]. Available: https://github.com/boston-dynamics/bosdyn-hospital-bot/blob/master/Applications%20of%20Mobile%20Robotics%20during%20COVID-19.pdf
  24. M. Ramezani, G. Tinchev, and M. Fallon, “Online LiDAR-SLAM for Legged Robots with Robust Registration and Deep-Learned Loop Closure,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020.
  25. D. Leidner, C. Borst, and G. Hirzinger, “Things are made for what they are: Solving manipulation tasks by using functional object classes,” IEEE-RAS International Conference on Humanoid Robots, pp. 429–435, 2012.
  26. J. C.-Y. Ngu, C. B.-S. Tsang, and D. C.-S. Koh, “The da Vinci Xi: a review of its capabilities, versatility, and potential role in robotic colorectal surgery,” Robotic Surgery: Research and Reviews, vol. 4, p. 77, 7 2017.
  27. P. Schmaus, D. Leidner, T. Kruger, R. Bayer, B. Pleintinger, A. Schiele, and N. Y. Lii, “Knowledge Driven Orbit-to-Ground Teleoperation of a Robot Coworker,” IEEE Robotics and Automation Letters, vol. 5, no. 1, pp. 143–150, 1 2020.
  28. G. Quere, A. Hagengruber, M. Iskandar, S. Bustamante, D. Leidner, F. Stulp, and J. Vogel, “Shared Control Templates for Assistive Robotics,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 1956–1962, 5 2020.
  29. “Telemanipulation in sterile environments for pharmaceutical manufacturing - SRI International.” [Online]. Available: https://www.sri.com/robotics-sensors-devices/telemanipulation-in-sterile-environments-for-pharmaceutical-manufacturing/
Citations (1)

Summary

We haven't generated a summary for this paper yet.