Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Biomimetic Fingerprint for Robotic Tactile Sensing (2307.00937v2)

Published 3 Jul 2023 in cs.RO

Abstract: Tactile sensors have been developed since the early '70s and have greatly improved, but there are still no widely adopted solutions. Various technologies, such as capacitive, piezoelectric, piezoresistive, optical, and magnetic, are used in haptic sensing. However, most sensors are not mechanically robust for many applications and cannot cope well with curved or sizeable surfaces. Aiming to address this problem, we present a 3D-printed fingerprint pattern to enhance the body-borne vibration signal for dynamic tactile feedback. The 3D-printed fingerprint patterns were designed and tested for an RH8D Adult size Robot Hand. The patterns significantly increased the signal's power to over 11 times the baseline. A public haptic dataset including 52 objects of several materials was created using the best fingerprint pattern and material.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. N. Navarro-Guerrero, S. Toprak, J. Josifovski, and L. Jamone, “Visuo-Haptic Object Perception for Robots: An Overview,” Autonomous Robots, p. 27, Mar. 2023.
  2. N. Pestell and N. F. Lepora, “Artificial SA-I, RA-I and RA-II/Vibrotactile Afferents for Tactile Sensing of Texture,” Journal of The Royal Society Interface, vol. 19, no. 189, p. 20210603, 2022.
  3. R. D. Howe and M. R. Cutkosky, “Dynamic Tactile Sensing: Perception of Fine Surface Features with Stress Rate Sensing,” IEEE Transactions on Robotics and Automation, vol. 9, no. 2, pp. 140–151, 1993.
  4. C. Chi, X. Sun, N. Xue, T. Li, and C. Liu, “Recent Progress in Technologies for Tactile Sensors,” Sensors, vol. 18, no. 4, p. 948, 2018.
  5. C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, and R. Shepherd, “Highly Stretchable Electroluminescent Skin for Optical Signaling and Tactile Sensing,” Science, vol. 351, no. 6277, pp. 1071–1074, 2016.
  6. L. Seminara, L. Pinna, M. Valle, L. Basiricò, A. Loi, P. Cosseddu, A. Bonfiglio, A. Ascia, M. Biso, A. Ansaldo, D. Ricci, and G. Metta, “Piezoelectric Polymer Transducer Arrays for Flexible Tactile Sensors,” IEEE Sensors Journal, vol. 13, no. 10, pp. 4022–4029, 2013.
  7. Y. Jung, D.-G. Lee, J. Park, H. Ko, and H. Lim, “Piezoresistive Tactile Sensor Discriminating Multidirectional Forces,” Sensors, vol. 15, no. 10, pp. 25 463–25 473, 2015.
  8. N. Kuppuswamy, A. Alspach, A. Uttamchandani, S. Creasey, T. Ikeda, and R. Tedrake, “Soft-Bubble Grippers for Robust and Perceptive Manipulation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 9917–9924.
  9. B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini, J. Rossiter, and N. F. Lepora, “The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies,” Soft Robotics, vol. 5, no. 2, pp. 216–227, 2018.
  10. P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-Compatible Fiber-Optic Force Sensors for Catheterization Procedures,” IEEE Sensors Journal, vol. 10, no. 10, pp. 1598–1608, 2010.
  11. L. Jamone, L. Natale, G. Metta, and G. Sandini, “Highly Sensitive Soft Tactile Sensors for an Anthropomorphic Robotic Hand,” IEEE Sensors Journal, vol. 15, no. 8, pp. 4226–4233, 2015.
  12. R. D. Howe and M. R. Cutkosky, “Sensing Skin Acceleration for Slip and Texture Perception,” in IEEE International Conference on Robotics and Automation, vol. 1, Scottsdale, AZ, USA, 1989, pp. 145–150.
  13. R. D. Howe, N. Popp, P. Akella, I. Kao, and M. R. Cutkosky, “Grasping, Manipulation, and Control with Tactile Sensing,” in IEEE International Conference on Robotics and Automation (ICRA), vol. 2, Cincinnati, OH, USA, 1990, pp. 1258–1263.
  14. J. Son, E. Monteverde, and R. Howe, “A Tactile Sensor for Localizing Transient Events in Manipulation,” in IEEE International Conference on Robotics and Automation (ICRA), San Diego, CA, USA, 1994, pp. 471–476 vol.1.
  15. J. Edwards, J. Lawry, J. Rossiter, and C. Melhuish, “Extracting Textural Features from Tactile Sensors,” Bioinspiration & Biomimetics, vol. 3, no. 3, p. 035002, 2008.
  16. D. Hughes and N. Correll, “A Soft, Amorphous Skin That Can Sense and Localize Textures,” in IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 1844–1851.
  17. M. J. Yang, K. Park, and J. Kim, “A Large Area Robotic Skin with Sparsely Embedded Microphones for Human-Robot Tactile Communication,” in IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 2021, pp. 3248–3254.
  18. P. Svensson, C. Antfolk, A. Björkman, and N. Malešević, “Electrotactile Feedback for the Discrimination of Different Surface Textures Using a Microphone,” Sensors, vol. 21, no. 10, p. 3384, 2021.
  19. W. Navaraj and R. Dahiya, “Fingerprint-Enhanced Capacitive-Piezoelectric Flexible Sensing Skin to Discriminate Static and Dynamic Tactile Stimuli,” Advanced Intelligent Systems, vol. 1, no. 7, p. 1900051, 2019.
  20. S. Toprak, N. Navarro-Guerrero, and S. Wermter, “Evaluating Integration Strategies for Visuo-Haptic Object Recognition,” Cognitive Computation, vol. 10, no. 3, pp. 408–425, 2018.
  21. L. E. R. Bonner, D. D. Buhl, K. Kristensen, and N. Navarro-Guerrero, “AU Dataset for Visuo-Haptic Object Recognition for Robots,” 2021, http://arxiv.org/abs/2112.13761.
  22. N. Pestell, T. Griffith, and N. F. Lepora, “Artificial SA-I and RA-I Afferents for Tactile Sensing of Ridges and Gratings,” Journal of The Royal Society Interface, vol. 19, no. 189, p. 20210822, 2022.
  23. Xometry, “Stereolithography (SLA) 3D Printing Design Tips,” 2020, https://xometry.eu/en/sla-3d-printing-design-tips/.
Citations (1)

Summary

We haven't generated a summary for this paper yet.