Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DSTCGCN: Learning Dynamic Spatial-Temporal Cross Dependencies for Traffic Forecasting (2307.00518v1)

Published 2 Jul 2023 in cs.LG and cs.AI

Abstract: Traffic forecasting is essential to intelligent transportation systems, which is challenging due to the complicated spatial and temporal dependencies within a road network. Existing works usually learn spatial and temporal dependencies separately, ignoring the dependencies crossing spatial and temporal dimensions. In this paper, we propose DSTCGCN, a dynamic spatial-temporal cross graph convolution network to learn dynamic spatial and temporal dependencies jointly via graphs for traffic forecasting. Specifically, we introduce a fast Fourier transform (FFT) based attentive selector to choose relevant time steps for each time step based on time-varying traffic data. Given the selected time steps, we introduce a dynamic cross graph construction module, consisting of the spatial graph construction, temporal connection graph construction, and fusion modules, to learn dynamic spatial-temporal cross dependencies without pre-defined priors. Extensive experiments on six real-world datasets demonstrate that DSTCGCN achieves the state-of-the-art performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. H. Yuan and G. Li, “A survey of traffic prediction: From spatio-temporal data to intelligent transportation,” Data Science and Engineering, vol. 6, no. 1, pp. 63–85, 2021.
  2. R. Jiang, D. Yin, Z. Wang, Y. Wang, J. Deng, H. Liu, Z. Cai, J. Deng, X. Song, and R. Shibasaki, “DL-Traff: Survey and benchmark of deep learning models for urban traffic prediction,” in Proceedings of the ACM International Conference on Information & Knowledge Management, 2021, pp. 4515–4525.
  3. E. L. Manibardo, I. Laña, and J. Del Ser, “Deep learning for road traffic forecasting: Does it make a difference?” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6164–6188, 2022.
  4. B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results,” Journal of transportation engineering, vol. 129, no. 6, pp. 664–672, 2003.
  5. C.-H. Wu, J.-M. Ho, and D.-T. Lee, “Travel-time prediction with support vector regression,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp. 276–281, 2004.
  6. X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction,” Sensors, vol. 17, no. 4, p. 818, 2017.
  7. H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks,” Sensors, vol. 17, no. 7, p. 1501, 2017.
  8. J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, and T. Li, “Predicting citywide crowd flows using deep spatio-temporal residual networks,” Artificial Intelligence, vol. 259, pp. 147–166, 2018.
  9. W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, and X. Feng, “Multi-range attentive bicomponent graph convolutional network for traffic forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 3529–3536.
  10. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, 2021.
  11. W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A survey,” Expert Systems with Applications, vol. 207, p. 117921, 2022.
  12. Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” in International Conference on Learning Representations, 2018.
  13. L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph convolutional recurrent network for traffic forecasting,” in Advances in Neural Information Processing Systems, 2020, pp. 17 804–17 815.
  14. B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting,” in Proceedings of the International Joint Conference on Artificial Intelligence, 2018, pp. 3634–3640.
  15. S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-temporal graph convolutional networks for traffic flow forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 922–929.
  16. C. Zheng, X. Fan, C. Wang, and J. Qi, “GMAN: A graph multi-attention network for traffic prediction,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 1234–1241.
  17. S. Guo, Y. Lin, H. Wan, X. Li, and G. Cong, “Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 11, pp. 5415–5428, 2021.
  18. Z. Fang, Q. Long, G. Song, and K. Xie, “Spatial-temporal graph ODE networks for traffic flow forecasting,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2021, pp. 364–373.
  19. M. Lv, Z. Hong, L. Chen, T. Chen, T. Zhu, and S. Ji, “Temporal multi-graph convolutional network for traffic flow prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3337–3348, 2020.
  20. X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu, “Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 3656–3663.
  21. A. Khaled, A. M. T. Elsir, and Y. Shen, “TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network,” Knowledge-Based Systems, vol. 249, p. 108990, 2022.
  22. M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for traffic flow forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 4189–4196.
  23. Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots: Multivariate time series forecasting with graph neural networks,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 753–763.
  24. H. Yu, T. Li, W. Yu, J. Li, Y. Huang, L. Wang, and A. Liu, “Regularized graph structure learning with semantic knowledge for multi-variates time-series forecasting,” in Proceedings of the Joint Conference on Artificial Intelligence, 2022, pp. 2362–2368.
  25. F. Li, J. Feng, H. Yan, G. Jin, F. Yang, F. Sun, D. Jin, and Y. Li, “Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution,” ACM Transactions on Knowledge Discovery from Data, vol. 17, no. 1, p. 21, 2023.
  26. S. Lan, Y. Ma, W. Huang, W. Wang, H. Yang, and P. Li, “DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting,” in Proceedings of the International Conference on Machine Learning, 2022, pp. 11 906–11 917.
  27. C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 914–921.
  28. Y. Chen, I. Segovia-Dominguez, B. Coskunuzer, and Y. Gel, “TAMP-S2GCNets: Coupling time-aware multipersistence knowledge representation with spatio-supra graph convolutional networks for time-series forecasting,” in International Conference on Learning Representations, 2022.
  29. Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph WaveNet for deep spatial-temporal graph modeling,” in Proceedings of the International Joint Conference on Artificial Intelligence, 2019, pp. 1907–1913.
  30. Q. Zhang, J. Chang, G. Meng, S. Xiang, and C. Pan, “Spatio-temporal graph structure learning for traffic forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 1177–1185.
  31. Z. Shao, Z. Zhang, W. Wei, F. Wang, Y. Xu, X. Cao, and C. S. Jensen, “Decoupled dynamic spatial-temporal graph neural network for traffic forecasting,” in Proceedings of the VLDB Endowment, 2022, pp. 2733–2746.
  32. F. Li, H. Yan, G. Jin, Y. Liu, Y. Li, and D. Jin, “Automated spatio-temporal synchronous modeling with multiple graphs for traffic prediction,” in Proceedings of the ACM International Conference on Information & Knowledge Management, 2022, pp. 1084–1093.
  33. Z. Wu, D. Zheng, S. Pan, Q. Gan, G. Long, and G. Karypis, “TraverseNet: Unifying space and time in message passing,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  34. L. Chi, B. Jiang, and Y. Mu, “Fast Fourier convolution,” in Advances in Neural Information Processing Systems, 2020, pp. 4479–4488.
  35. J. Xu, J. Wang, M. Long et al., “Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting,” in Advances in Neural Information Processing Systems, 2021, pp. 22 419–22 430.
  36. T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting,” in Proceedings of the International Conference on Machine Learning, 2022, pp. 27 268–27 286.
  37. D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing ingredient for fast stylization,” arXiv, 2016.
  38. J. Deng, X. Chen, R. Jiang, X. Song, and I. W. Tsang, “ST-Norm: Spatial and temporal normalization for multi-variate time series forecasting,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2021, pp. 269–278.
  39. J. Jiang, B. Wu, L. Chen, and S. Kim, “Dynamic adaptive and adversarial graph convolutional network for traffic forecasting,” arXiv, 2022.
  40. E. Zivot and J. Wang, “Vector autoregressive models for multivariate time series,” Modeling financial time series with S-PLUS®, pp. 369–413, 2006.
  41. X. SHI, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. WOO, “Convolutional LSTM network: A machine learning approach for precipitation nowcasting,” in Advances in Neural Information Processing Systems, 2015, pp. 802–810.
  42. D. Cao, Y. Wang, J. Duan, C. Zhang, X. Zhu, C. Huang, Y. Tong, B. Xu, J. Bai, J. Tong, and Q. Zhang, “Spectral temporal graph neural network for multivariate time-series forecasting,” in Advances in Neural Information Processing Systems, 2020, pp. 17 766–17 778.
  43. Y. Chen, I. Segovia, and Y. R. Gel, “Z-GCNETs: Time zigzags at graph convolutional networks for time series forecasting,” in Proceedings of the International Conference on Machine Learning, 2021, pp. 1684–1694.
  44. A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek, “Explainable AI methods-A brief overview,” in xxAI-Beyond Explainable AI: International Workshop, 2022, pp. 13–38.
Citations (1)

Summary

We haven't generated a summary for this paper yet.