2000 character limit reached
An Intelligent Mechanism for Monitoring and Detecting Intrusions in IoT Devices (2306.17187v1)
Published 23 Jun 2023 in cs.DC, cs.AI, and cs.CR
Abstract: The current amount of IoT devices and their limitations has come to serve as a motivation for malicious entities to take advantage of such devices and use them for their own gain. To protect against cyberattacks in IoT devices, Machine Learning techniques can be applied to Intrusion Detection Systems. Moreover, privacy related issues associated with centralized approaches can be mitigated through Federated Learning. This work proposes a Host-based Intrusion Detection Systems that leverages Federated Learning and Multi-Layer Perceptron neural networks to detected cyberattacks on IoT devices with high accuracy and enhancing data privacy protection.
- G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.
- I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.
- K. Elissa, “Title of paper if known,” unpublished.
- R. Nicole, “Title of paper with only first word capitalized,” J. Name Stand. Abbrev., in press.
- Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media and plastic substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].