Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blockchain-based Federated Learning for Decentralized Energy Management Systems (2306.17186v1)

Published 23 Jun 2023 in cs.DC and cs.AI

Abstract: The Internet of Energy (IoE) is a distributed paradigm that leverages smart networks and distributed system technologies to enable decentralized energy systems. In contrast to the traditional centralized energy systems, distributed Energy Internet systems comprise multiple components and communication requirements that demand innovative technologies for decentralization, reliability, efficiency, and security. Recent advances in blockchain architectures, smart contracts, and distributed federated learning technologies have opened up new opportunities for realizing decentralized Energy Internet services. In this paper, we present a comprehensive analysis and classification of state-of-the-art solutions that employ blockchain, smart contracts, and federated learning for the IoE domains. Specifically, we identify four representative system models and discuss their key aspects. These models demonstrate the diverse ways in which blockchain, smart contracts, and federated learning can be integrated to support the main domains of IoE, namely distributed energy trading and sharing, smart microgrid energy networks, and electric and connected vehicle management. Furthermore, we provide a detailed comparison of the different levels of decentralization, the advantages of federated learning, and the benefits of using blockchain for the IoE systems. Additionally, we identify open issues and areas for future research for integrating federated learning and blockchain in the Internet of Energy domains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. K. Wang, Y. Zhang, S. Guo, M. Dong, R. Q. Hu, and L. He, “Ieee access special section editorial: the internet of energy: architectures, cyber security, and applications,” IEEE access, vol. 6, pp. 79 272–79 275, 2018.
  2. S. S. Hussain, F. Nadeem, M. A. Aftab, I. Ali, and T. S. Ustun, “The emerging energy internet: Architecture, benefits, challenges, and future prospects,” Electronics, vol. 8, no. 9, p. 1037, 2019.
  3. K. Wang, J. Yu, Y. Yu, Y. Qian, D. Zeng, S. Guo, Y. Xiang, and J. Wu, “A survey on energy internet: Architecture, approach, and emerging technologies,” IEEE systems journal, vol. 12, no. 3, pp. 2403–2416, 2017.
  4. E. A. Soto, L. B. Bosman, E. Wollega, and W. D. Leon-Salas, “Peer-to-peer energy trading: A review of the literature,” Applied Energy, vol. 283, p. 116268, 2021.
  5. O. Bouachir, M. Aloqaily, Ö. Özkasap, and F. Ali, “Federatedgrids: Federated learning and blockchain-assisted p2p energy sharing,” IEEE Transactions on Green Communications and Networking, vol. 6, no. 1, pp. 424–436, 2022.
  6. C. Cecati, G. Mokryani, A. Piccolo, and P. Siano, “An overview on the smart grid concept,” in IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society.   IEEE, 2010, pp. 3322–3327.
  7. J. Wang, Q. Wang, N. Zhou, and Y. Chi, “A novel electricity transaction mode of microgrids based on blockchain and continuous double auction,” Energies, vol. 10, no. 12, p. 1971, 2017.
  8. N. Chen, M. Wang, N. Zhang, and X. Shen, “Energy and information management of electric vehicular network: A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 967–997, 2020.
  9. S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” in Conference on the Theory and Application of Cryptography.   Springer, 1990, pp. 437–455.
  10. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review, p. 21260, 2008.
  11. A. Haleem, M. Javaid, R. P. Singh, R. Suman, and S. Rab, “Blockchain technology applications in healthcare: An overview,” International Journal of Intelligent Networks, vol. 2, pp. 130–139, 2021.
  12. M. M. Queiroz, R. Telles, and S. H. Bonilla, “Blockchain and supply chain management integration: a systematic review of the literature,” Supply Chain Management: An International Journal, 2019.
  13. D. Zheng, K. Deng, Y. Zhang, J. Zhao, X. Zheng, and X. Ma, “Smart grid power trading based on consortium blockchain in internet of things,” in Algorithms and Architectures for Parallel Processing: 18th International Conference, ICA3PP 2018, Guangzhou, China, November 15-17, 2018, Proceedings, Part III.   Springer, 2018, pp. 453–459.
  14. Z. Su, Y. Wang, Q. Xu, M. Fei, Y.-C. Tian, and N. Zhang, “A secure charging scheme for electric vehicles with smart communities in energy blockchain,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4601–4613, 2018.
  15. S. Sahoo, A. M. Fajge, R. Halder, and A. Cortesi, “A hierarchical and abstraction-based blockchain model,” Applied Sciences, vol. 9, no. 11, p. 2343, 2019.
  16. Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4298–4311, 2020.
  17. B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart contract and use cases in blockchain technology,” in 2018 9th international conference on computing, communication and networking technologies (ICCCNT).   IEEE, 2018, pp. 1–4.
  18. F. S. Ali, O. Bouachir, Ö. Özkasap, and M. Aloqaily, “Synergychain: Blockchain-assisted adaptive cyber-physical p2p energy trading,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5769–5778, 2020.
  19. J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Distributed machine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527, 2016.
  20. P. M. Mammen, “Federated learning: Opportunities and challenges,” arXiv preprint arXiv:2101.05428, 2021.
  21. C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, 2021.
  22. J. Wu and N. K. Tran, “Application of blockchain technology in sustainable energy systems: An overview,” Sustainability, vol. 10, no. 9, p. 3067, 2018.
  23. A. Miglani, N. Kumar, V. Chamola, and S. Zeadally, “Blockchain for internet of energy management: Review, solutions, and challenges,” Computer Communications, vol. 151, pp. 395–418, 2020.
  24. M. Billah, S. Mehedi, A. Anwar, Z. Rahman, R. Islam et al., “A systematic literature review on blockchain enabled federated learning framework for internet of vehicles,” arXiv preprint arXiv:2203.05192, 2022.
  25. F. S. Ali, M. Aloqaily, O. Alfandi, and O. Ozkasap, “Cyberphysical blockchain-enabled peer-to-peer energy trading,” Computer, vol. 53, no. 9, pp. 56–65, 2020.
  26. D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le, A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning meets blockchain in edge computing: Opportunities and challenges,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 806–12 825, 2021.
  27. S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh, “Federated learning review: Fundamentals, enabling technologies, and future applications,” Information processing & management, vol. 59, no. 6, p. 103061, 2022.
  28. H. Chai, S. Leng, Y. Chen, and K. Zhang, “A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 3975–3986, 2020.
  29. F. Ayaz, Z. Sheng, D. Tian, and Y. L. Guan, “A blockchain based federated learning for message dissemination in vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 71, no. 2, pp. 1927–1940, 2021.
  30. S. Otoum, I. Al Ridhawi, and H. Mouftah, “A federated learning and blockchain-enabled sustainable energy-trade at the edge: A framework for industry 4.0,” IEEE Internet of Things Journal, 2022.
  31. S. Otoum, I. Al Ridhawi, and H. T. Mouftah, “Blockchain-supported federated learning for trustworthy vehicular networks,” in GLOBECOM 2020-2020 IEEE Global Communications Conference.   IEEE, 2020, pp. 1–6.
  32. Y. He, K. Huang, G. Zhang, F. R. Yu, J. Chen, and J. Li, “Bift: A blockchain-based federated learning system for connected and autonomous vehicles,” IEEE Internet of Things Journal, 2021.
  33. Z. Teimoori, A. Yassine, and M. S. Hossain, “A secure cloudlet-based charging station recommendation for electric vehicles empowered by federated learning,” IEEE Transactions on Industrial Informatics, 2022.
  34. M. Aloqaily, I. Al Ridhawi, and M. Guizani, “Energy-aware blockchain and federated learning-supported vehicular networks,” IEEE Transactions on Intelligent Transportation Systems, 2021.
  35. G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.
  36. Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “Lightchain: Scalable dht-based blockchain,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 10, pp. 2582–2593, 2021.
  37. R. Abe, S. Suzuki, and J. Murai, “Mitigating bitcoin node storage size by dht,” in Proceedings of the 14th Asian Internet Engineering Conference, 2018, pp. 17–23.
  38. T. Wu, P. L. Yeoh, G. Jourjon, and K. Thilakarathna, “Mapchain: A dht-based dual-blockchain data structure for large-scale iot systems,” in 2021 IEEE 7th World Forum on Internet of Things (WF-IoT).   IEEE, 2021, pp. 177–182.
  39. L. Chen, X. Zhang, and Z. Sun, “Scalable blockchain storage model based on dht and ipfs.” KSII Transactions on Internet & Information Systems, vol. 16, no. 7, 2022.
  40. A. Zekiye and Ö. Özkasap, “The internet of energy systems: Blockchain and smart contracts meet federated learning, poster,” in IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.