Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Stochastic gravitational wave background from early dark energy (2306.16896v1)

Published 29 Jun 2023 in astro-ph.CO, gr-qc, and hep-ph

Abstract: We study the production of stochastic gravitational wave background from early dark energy (EDE) model. It is caused by resonant amplification of scalar field fluctuations, which easily takes place for typical EDE potential based on the string axion or $\alpha$-attractor model. The resultant spectrum of gravitational wave background is computed by performing 3D lattice simulations. We show that, specifically in some class of generalized $\alpha$-attractor EDE model, a significant amount of gravitational waves can be produced via tachyonic instability with a peak around femto-Hz frequency range. Models predicting such gravitational waves can be constrained by the cosmic microwave background observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension¥textemdasha review of solutions,” Class. Quant. Grav. 38 no. 15, (2021) 153001, arXiv:2103.01183 [astro-ph.CO].
  2. L. Perivolaropoulos and F. Skara, “Challenges for ¥⁢L⁢a⁢m⁢b⁢d⁢a¥𝐿𝑎𝑚𝑏𝑑𝑎\textyen Lambda¥ italic_L italic_a italic_m italic_b italic_d italic_aCDM: An update,” New Astron. Rev. 95 (2022) , arXiv:2105.05208 [astro-ph.CO].
  3. V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, “Early Dark Energy Can Resolve The Hubble Tension,” Phys. Rev. Lett. 122 no. 22, (2019) 221301, arXiv:1811.04083 [astro-ph.CO].
  4. R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
  5. R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D16 (1977) 1791–1797.
  6. S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.
  7. F. Wilczek, “Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
  8. P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051, arXiv:hep-th/0605206.
  9. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, “String Axiverse,” Phys. Rev. D 81 (2010) 123530, arXiv:0905.4720 [hep-th].
  10. M. Cicoli, M. Goodsell, and A. Ringwald, “The type IIB string axiverse and its low-energy phenomenology,” JHEP 10 (2012) 146, arXiv:1206.0819 [hep-th].
  11. M. Kamionkowski, J. Pradler, and D. G. E. Walker, “Dark energy from the string axiverse,” Phys. Rev. Lett. 113 no. 25, (2014) 251302, arXiv:1409.0549 [hep-ph].
  12. T. Karwal and M. Kamionkowski, “Dark energy at early times, the Hubble parameter, and the string axiverse,” Phys. Rev. D 94 no. 10, (2016) 103523, arXiv:1608.01309 [astro-ph.CO].
  13. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. I. Overview and the cosmological legacy of Planck,” Astron. Astrophys. 641 (2020) A1, arXiv:1807.06205 [astro-ph.CO].
  14. Y. Minami and E. Komatsu, “New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data,” Phys. Rev. Lett. 125 no. 22, (2020) 221301, arXiv:2011.11254 [astro-ph.CO].
  15. T. Fujita, K. Murai, H. Nakatsuka, and S. Tsujikawa, “Detection of isotropic cosmic birefringence and its implications for axionlike particles including dark energy,” Phys. Rev. D 103 no. 4, (2021) 043509, arXiv:2011.11894 [astro-ph.CO].
  16. G. Choi, W. Lin, L. Visinelli, and T. T. Yanagida, “Cosmic birefringence and electroweak axion dark energy,” Phys. Rev. D 104 no. 10, (2021) L101302, arXiv:2106.12602 [hep-ph].
  17. H. Nakatsuka, T. Namikawa, and E. Komatsu, “Is cosmic birefringence due to dark energy or dark matter? A tomographic approach,” Phys. Rev. D 105 no. 12, (2022) 123509, arXiv:2203.08560 [astro-ph.CO].
  18. K. Murai, F. Naokawa, T. Namikawa, and E. Komatsu, “Isotropic cosmic birefringence from early dark energy,” Phys. Rev. D 107 no. 4, (2023) L041302, arXiv:2209.07804 [astro-ph.CO].
  19. J. R. Eskilt, L. Herold, E. Komatsu, K. Murai, T. Namikawa, and F. Naokawa, “Constraint on Early Dark Energy from Isotropic Cosmic Birefringence,” arXiv:2303.15369 [astro-ph.CO].
  20. L. Kofman, A. D. Linde, and A. A. Starobinsky, “Reheating after inflation,” Phys. Rev. Lett. 73 (1994) 3195–3198, arXiv:hep-th/9405187.
  21. L. Kofman, A. D. Linde, and A. A. Starobinsky, “Towards the theory of reheating after inflation,” Phys. Rev. D 56 (1997) 3258–3295, arXiv:hep-ph/9704452.
  22. S. Y. Khlebnikov and I. I. Tkachev, “Relic gravitational waves produced after preheating,” Phys. Rev. D 56 (1997) 653–660, arXiv:hep-ph/9701423.
  23. R. Easther and E. A. Lim, “Stochastic gravitational wave production after inflation,” JCAP 04 (2006) 010, arXiv:astro-ph/0601617.
  24. R. Easther, J. T. Giblin, Jr., and E. A. Lim, “Gravitational Wave Production At The End Of Inflation,” Phys. Rev. Lett. 99 (2007) 221301, arXiv:astro-ph/0612294.
  25. J. Garcia-Bellido and D. G. Figueroa, “A stochastic background of gravitational waves from hybrid preheating,” Phys. Rev. Lett. 98 (2007) 061302, arXiv:astro-ph/0701014.
  26. J. Garcia-Bellido, D. G. Figueroa, and A. Sastre, “A Gravitational Wave Background from Reheating after Hybrid Inflation,” Phys. Rev. D 77 (2008) 043517, arXiv:0707.0839 [hep-ph].
  27. D. G. Figueroa and F. Torrenti, “Gravitational wave production from preheating: parameter dependence,” JCAP 10 (2017) 057, arXiv:1707.04533 [astro-ph.CO].
  28. P. Adshead, J. T. Giblin, and Z. J. Weiner, “Gravitational waves from gauge preheating,” Phys. Rev. D 98 no. 4, (2018) 043525, arXiv:1805.04550 [astro-ph.CO].
  29. J. Soda and Y. Urakawa, “Cosmological imprints of string axions in plateau,” Eur. Phys. J. C 78 no. 9, (2018) 779, arXiv:1710.00305 [astro-ph.CO].
  30. N. Kitajima, J. Soda, and Y. Urakawa, “Gravitational wave forest from string axiverse,” JCAP 10 (2018) 008, arXiv:1807.07037 [astro-ph.CO].
  31. C. S. Machado, W. Ratzinger, P. Schwaller, and B. A. Stefanek, “Audible Axions,” JHEP 01 (2019) 053, arXiv:1811.01950 [hep-ph].
  32. C. S. Machado, W. Ratzinger, P. Schwaller, and B. A. Stefanek, “Gravitational wave probes of axionlike particles,” Phys. Rev. D 102 no. 7, (2020) 075033, arXiv:1912.01007 [hep-ph].
  33. W. Ratzinger and P. Schwaller, “Whispers from the dark side: Confronting light new physics with NANOGrav data,” SciPost Phys. 10 no. 2, (2021) 047, arXiv:2009.11875 [astro-ph.CO].
  34. R. Namba and M. Suzuki, “Implications of Gravitational-wave Production from Dark Photon Resonance to Pulsar-timing Observations and Effective Number of Relativistic Species,” Phys. Rev. D 102 (2020) 123527, arXiv:2009.13909 [astro-ph.CO].
  35. N. Kitajima, J. Soda, and Y. Urakawa, “Nano-Hz Gravitational-Wave Signature from Axion Dark Matter,” Phys. Rev. Lett. 126 no. 12, (2021) 121301, arXiv:2010.10990 [astro-ph.CO].
  36. W. Ratzinger, P. Schwaller, and B. A. Stefanek, “Gravitational Waves from an Axion-Dark Photon System: A Lattice Study,” SciPost Phys. 11 (2021) 001, arXiv:2012.11584 [astro-ph.CO].
  37. R. T. Co, K. Harigaya, and A. Pierce, “Gravitational waves and dark photon dark matter from axion rotations,” JHEP 12 (2021) 099, arXiv:2104.02077 [hep-ph].
  38. E. Madge, W. Ratzinger, D. Schmitt, and P. Schwaller, “Audible axions with a booster: Stochastic gravitational waves from rotating ALPs,” SciPost Phys. 12 no. 5, (2022) 171, arXiv:2111.12730 [hep-ph].
  39. M. C. Johnson and M. Kamionkowski, “Dynamical and Gravitational Instability of Oscillating-Field Dark Energy and Dark Matter,” Phys. Rev. D 78 (2008) 063010, arXiv:0805.1748 [astro-ph].
  40. Z. J. Weiner, P. Adshead, and J. T. Giblin, “Constraining early dark energy with gravitational waves before recombination,” Phys. Rev. D 103 no. 2, (2021) L021301, arXiv:2008.01732 [astro-ph.CO].
  41. F. X. Linares Cedeño, A. Montiel, J. C. Hidalgo, and G. Germán, “Bayesian evidence for α𝛼\alphaitalic_α-attractor dark energy models,” JCAP 08 (2019) 002, arXiv:1905.00834 [gr-qc].
  42. M. Braglia, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu, and K. Koyama, “Unified framework for early dark energy from α𝛼\alphaitalic_α-attractors,” Phys. Rev. D 102 no. 8, (2020) 083513, arXiv:2005.14053 [astro-ph.CO].
  43. N. Kitajima, T. Sekiguchi, and F. Takahashi, “Cosmological abundance of the QCD axion coupled to hidden photons,” Phys. Lett. B 781 (2018) 684–687, arXiv:1711.06590 [hep-ph].
  44. P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi, and F. Takahashi, “Relic Abundance of Dark Photon Dark Matter,” Phys. Lett. B 801 (2020) 135136, arXiv:1810.07188 [hep-ph].
  45. P. B. Greene, L. Kofman, A. D. Linde, and A. A. Starobinsky, “Structure of resonance in preheating after inflation,” Phys. Rev. D 56 (1997) 6175–6192, arXiv:hep-ph/9705347.
  46. V. Poulin, T. L. Smith, and T. Karwal, “The Ups and Downs of Early Dark Energy solutions to the Hubble tension: a review of models, hints and constraints circa 2023,” arXiv:2302.09032 [astro-ph.CO].
  47. T. L. Smith, V. Poulin, and M. A. Amin, “Oscillating scalar fields and the Hubble tension: a resolution with novel signatures,” Phys. Rev. D 101 no. 6, (2020) 063523, arXiv:1908.06995 [astro-ph.CO].
  48. H. Fukunaga, N. Kitajima, and Y. Urakawa, “Efficient self-resonance instability from axions,” JCAP 06 (2019) 055, arXiv:1903.02119 [astro-ph.CO].
  49. T. J. Clarke, E. J. Copeland, and A. Moss, “Constraints on primordial gravitational waves from the Cosmic Microwave Background,” JCAP 10 (2020) 002, arXiv:2004.11396 [astro-ph.CO].
  50. D. I. Podolsky, G. N. Felder, L. Kofman, and M. Peloso, “Equation of state and beginning of thermalization after preheating,” Phys. Rev. D 73 (2006) 023501, arXiv:hep-ph/0507096.
  51. A. Gruppuso, D. Molinari, P. Natoli, and L. Pagano, “Planck 2018 constraints on anisotropic birefringence and its cross-correlation with CMB anisotropy,” JCAP 11 (2020) 066, arXiv:2008.10334 [astro-ph.CO].
  52. M. Bortolami, M. Billi, A. Gruppuso, P. Natoli, and L. Pagano, “Planck constraints on cross-correlations between anisotropic cosmic birefringence and CMB polarization,” JCAP 09 (2022) 075, arXiv:2206.01635 [astro-ph.CO].
  53. F. Niedermann and M. S. Sloth, “New early dark energy,” Phys. Rev. D 103 no. 4, (2021) L041303, arXiv:1910.10739 [astro-ph.CO].
  54. F. Niedermann and M. S. Sloth, “Resolving the Hubble tension with new early dark energy,” Phys. Rev. D 102 no. 6, (2020) 063527, arXiv:2006.06686 [astro-ph.CO].
  55. J. S. Cruz, S. Hannestad, E. B. Holm, F. Niedermann, M. S. Sloth, and T. Tram, “Profiling Cold New Early Dark Energy,” arXiv:2302.07934 [astro-ph.CO].
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.