Quantitative stability of a nonlocal Sobolev inequality (2306.16883v1)
Abstract: In this paper, we study the quantitative stability of the nonlocal Soblev inequality \begin{equation*} S_{HL}\left(\int_{\mathbb{R}N}\big(|x|{-\mu} \ast |u|{2_{\mu}{\ast}}\big)|u|{2_{\mu}{\ast}} dx\right){\frac{1}{2_{\mu}{\ast}}}\leq\int_{\mathbb{R}N}|\nabla u|2 dx , \quad \forall~u\in \mathcal{D}{1,2}(\mathbb{R}N), \end{equation*} where $2_{\mu}{\ast}=\frac{2N-\mu}{N-2}$ and $S_{HL}$ is a positive constant depending only on $N$ and $\mu$. For $N\geq3$, and $0<\mu<N$, it is well-known that, up to translation and scaling, the nonlocal Soblev inequality has a unique extremal function $W[\xi,\lambda]$ which is positive and radially symmetric. We first prove a result of quantitative stability of the nonlocal Soblev inequality with the level of gradients. Secondly, we also establish the stability of profile decomposition to the Euler-Lagrange equation of the above inequality for nonnegative functions. Finally we study the stability of the nonlocal Soblev inequality \begin{equation*} \Big|\nabla u-\sum_{i=1}{\kappa}\nabla W[\xi_i,\lambda_i]\Big|{L2}\leq C\Big|\Delta u+\left(\frac{1}{|x|{\mu}}\ast |u|{2{\mu}{\ast}}\right)|u|{2_{\mu}{\ast}-2}u\Big|_{(\mathcal{D}{1,2}(\mathbb{R}N)){-1}} \end{equation*} with the parameter region $\kappa\geq2$, $3\leq N<6-\mu$, $\mu\in(0,N)$ satisfying $0<\mu\leq4$, or dimension $N\geq3$ and $\kappa=1$, $\mu\in(0,N)$ satisfying $0<\mu\leq4$.