Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy (2306.16324v2)

Published 28 Jun 2023 in eess.IV and cs.CV

Abstract: Treatment planning, which is a critical component of the radiotherapy workflow, is typically carried out by a medical physicist in a time-consuming trial-and-error manner. Previous studies have proposed knowledge-based or deep-learning-based methods for predicting dose distribution maps to assist medical physicists in improving the efficiency of treatment planning. However, these dose prediction methods usually fail to effectively utilize distance information between surrounding tissues and targets or organs-at-risk (OARs). Moreover, they are poor at maintaining the distribution characteristics of ray paths in the predicted dose distribution maps, resulting in a loss of valuable information. In this paper, we propose a distance-aware diffusion model (DoseDiff) for precise prediction of dose distribution. We define dose prediction as a sequence of denoising steps, wherein the predicted dose distribution map is generated with the conditions of the computed tomography (CT) image and signed distance maps (SDMs). The SDMs are obtained by distance transformation from the masks of targets or OARs, which provide the distance from each pixel in the image to the outline of the targets or OARs. We further propose a multi-encoder and multi-scale fusion network (MMFNet) that incorporates multi-scale and transformer-based fusion modules to enhance information fusion between the CT image and SDMs at the feature level. We evaluate our model on two in-house datasets and a public dataset, respectively. The results demonstrate that our DoseDiff method outperforms state-of-the-art dose prediction methods in terms of both quantitative performance and visual quality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. B. Sahiner, A. Pezeshk, L. M. Hadjiiski, X. Wang, K. Drukker, K. H. Cha, R. M. Summers, and M. L. Giger, “Deep learning in medical imaging and radiation therapy,” Medical Physics, vol. 46, no. 1, pp. 1–36, 2019.
  2. G. Delaney, S. Jacob, C. Featherstone, and M. Barton, “The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines,” Cancer: Interdisciplinary International Journal of the American Cancer Society, vol. 104, no. 6, pp. 1129–1137, 2005.
  3. D. L. Craft, T. S. Hong, H. A. Shih, and T. R. Bortfeld, “Improved planning time and plan quality through multicriteria optimization for intensity-modulated radiotherapy,” International Journal of Radiation Oncology* Biology* Physics, vol. 82, no. 1, pp. 83–90, 2012.
  4. L. J. Schreiner, “On the quality assurance and verification of modern radiation therapy treatment,” Journal of Medical Physics/Association of Medical Physicists of India, vol. 36, no. 4, p. 189, 2011.
  5. B. Zhan, J. Xiao, C. Cao, X. Peng, C. Zu, J. Zhou, and Y. Wang, “Multi-constraint generative adversarial network for dose prediction in radiotherapy,” Medical Image Analysis, vol. 77, p. 102339, 2022.
  6. Y. Song, J. Hu, Y. Liu, H. Hu, Y. Huang, S. Bai, and Z. Yi, “Dose prediction using a deep neural network for accelerated planning of rectal cancer radiotherapy,” Radiotherapy and Oncology, vol. 149, pp. 111–116, 2020.
  7. S. Shiraishi, J. Tan, L. A. Olsen, and K. L. Moore, “Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery,” Medical Physics, vol. 42, no. 2, pp. 908–917, 2015.
  8. O. Nwankwo, H. Mekdash, D. S. K. Sihono, F. Wenz, and G. Glatting, “Knowledge-based radiation therapy (kbrt) treatment planning versus planning by experts: validation of a kbrt algorithm for prostate cancer treatment planning,” Radiation Oncology, vol. 10, no. 1, pp. 1–5, 2015.
  9. B. Wu, F. Ricchetti, G. Sanguineti, M. Kazhdan, P. Simari, R. Jacques, R. Taylor, and T. McNutt, “Data-driven approach to generating achievable dose–volume histogram objectives in intensity-modulated radiotherapy planning,” International Journal of Radiation Oncology* Biology* Physics, vol. 79, no. 4, pp. 1241–1247, 2011.
  10. T. Song, D. Staub, M. Chen, W. Lu, Z. Tian, X. Jia, Y. Li, L. Zhou, S. B. Jiang, and X. Gu, “Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy,” Physics in Medicine & Biology, vol. 60, no. 21, p. 8213, 2015.
  11. R. R. Deshpande, J. DeMarco, J. W. Sayre, and B. J. Liu, “Knowledge-driven decision support for assessing dose distributions in radiation therapy of head and neck cancer,” International Journal of Computer Assisted Radiology and Surgery, vol. 11, pp. 2071–2083, 2016.
  12. G. Valdes, C. B. Simone II, J. Chen, A. Lin, S. S. Yom, A. J. Pattison, C. M. Carpenter, and T. D. Solberg, “Clinical decision support of radiotherapy treatment planning: A data-driven machine learning strategy for patient-specific dosimetric decision making,” Radiotherapy and Oncology, vol. 125, no. 3, pp. 392–397, 2017.
  13. C. McIntosh and T. G. Purdie, “Contextual atlas regression forests: multiple-atlas-based automated dose prediction in radiation therapy,” IEEE Transactions on Medical Imaging, vol. 35, no. 4, pp. 1000–1012, 2015.
  14. O. Morin, M. Vallières, A. Jochems, H. C. Woodruff, G. Valdes, S. E. Braunstein, J. E. Wildberger, J. E. Villanueva-Meyer, V. Kearney, S. S. Yom et al., “A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change,” International Journal of Radiation Oncology* Biology* Physics, vol. 102, no. 4, pp. 1074–1082, 2018.
  15. P. Dong and L. Xing, “Deep dosenet: a deep neural network for accurate dosimetric transformation between different spatial resolutions and/or different dose calculation algorithms for precision radiation therapy,” Physics in Medicine & Biology, vol. 65, no. 3, p. 035010, 2020.
  16. J. Fan, J. Wang, Z. Chen, C. Hu, Z. Zhang, and W. Hu, “Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique,” Medical Physics, vol. 46, no. 1, pp. 370–381, 2019.
  17. V. Kearney, J. W. Chan, S. Haaf, M. Descovich, and T. D. Solberg, “Dosenet: a volumetric dose prediction algorithm using 3d fully-convolutional neural networks,” Physics in Medicine & Biology, vol. 63, no. 23, p. 235022, 2018.
  18. V. Kearney, J. W. Chan, T. Wang, A. Perry, M. Descovich, O. Morin, S. S. Yom, and T. D. Solberg, “Dosegan: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation,” Scientific Reports, vol. 10, no. 1, p. 11073, 2020.
  19. C. Kontaxis, G. Bol, J. Lagendijk, and B. Raaymakers, “Deepdose: towards a fast dose calculation engine for radiation therapy using deep learning,” Physics in Medicine & Biology, vol. 65, no. 7, p. 075013, 2020.
  20. D. Nguyen, X. Jia, D. Sher, M.-H. Lin, Z. Iqbal, H. Liu, and S. Jiang, “3d radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected u-net deep learning architecture,” Physics in Medicine & Biology, vol. 64, no. 6, p. 065020, 2019.
  21. D. Nguyen, T. Long, X. Jia, W. Lu, X. Gu, Z. Iqbal, and S. Jiang, “A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning,” Scientific Reports, vol. 9, no. 1, p. 1076, 2019.
  22. I. Sumida, T. Magome, I. J. Das, H. Yamaguchi, H. Kizaki, K. Aboshi, H. Yamaguchi, Y. Seo, F. Isohashi, and K. Ogawa, “A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy,” Medical Physics, vol. 72, pp. 88–95, 2020.
  23. M. Yue, X. Xue, Z. Wang, R. L. Lambo, W. Zhao, Y. Xie, J. Cai, and W. Qin, “Dose prediction via distance-guided deep learning: Initial development for nasopharyngeal carcinoma radiotherapy,” Radiotherapy and Oncology, vol. 170, pp. 198–204, 2022.
  24. J. Hu, Y. Song, Q. Wang, S. Bai, and Z. Yi, “Incorporating historical sub-optimal deep neural networks for dose prediction in radiotherapy,” Medical Image Analysis, vol. 67, p. 101886, 2021.
  25. L. Yuan, Y. Ge, W. R. Lee, F. F. Yin, J. P. Kirkpatrick, and Q. J. Wu, “Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in imrt plans,” Medical Physics, vol. 39, no. 11, pp. 6868–6878, 2012.
  26. Z. Jiao, X. Peng, Y. Wang, J. Xiao, D. Nie, X. Wu, X. Wang, J. Zhou, and D. Shen, “Transdose: Transformer-based radiotherapy dose prediction from ct images guided by super-pixel-level gcn classification,” Medical Image Analysis, vol. 89, p. 102902, 2023.
  27. F. Xiao, J. Cai, X. Zhou, L. Zhou, T. Song, and Y. Li, “Transdose: a transformer-based unet model for fast and accurate dose calculation for mr-linacs,” Physics in Medicine & Biology, vol. 67, no. 12, p. 125013, 2022.
  28. J. Zhang, S. Liu, H. Yan, T. Li, R. Mao, and J. Liu, “Predicting voxel-level dose distributions for esophageal radiotherapy using densely connected network with dilated convolutions,” Physics in Medicine & Biology, vol. 65, no. 20, p. 205013, 2020.
  29. T. Zhou, S. Ruan, and S. Canu, “A review: Deep learning for medical image segmentation using multi-modality fusion,” Array, vol. 3, p. 100004, 2019.
  30. T. Zhou, H. Fu, G. Chen, J. Shen, and L. Shao, “Hi-net: hybrid-fusion network for multi-modal mr image synthesis,” IEEE Transactions on Medical Imaging, vol. 39, no. 9, pp. 2772–2781, 2020.
  31. Z. Meng, Y. Zhu, W. Pang, J. Tian, F. Nie, and K. Wang, “Msmfn: An ultrasound based multi-step modality fusion network for identifying the histologic subtypes of metastatic cervical lymphadenopathy,” IEEE Transactions on Medical Imaging, vol. 42, no. 4, pp. 996–1008, 2023.
  32. B. Wang, L. Teng, L. Mei, Z. Cui, X. Xu, Q. Feng, and D. Shen, “Deep learning-based head and neck radiotherapy planning dose prediction via beam-wise dose decomposition,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2022, pp. 575–584.
  33. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of wasserstein gans,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  34. L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial networks,” arXiv preprint arXiv:1611.02163, 2016.
  35. C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi, “Palette: Image-to-image diffusion models,” in ACM SIGGRAPH 2022 Conference Proceedings, 2022, pp. 1–10.
  36. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
  37. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” in International Conference on Learning Representations, 2021.
  38. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.
  39. S. Xie, Z. Zhang, Z. Lin, T. Hinz, and K. Zhang, “Smartbrush: Text and shape guided object inpainting with diffusion model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 428–22 437.
  40. S. Gao, X. Liu, B. Zeng, S. Xu, Y. Li, X. Luo, J. Liu, X. Zhen, and B. Zhang, “Implicit diffusion models for continuous super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 10 021–10 030.
  41. C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution via iterative refinement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 4713–4726, 2022.
  42. Q. Lyu and G. Wang, “Conversion between ct and mri images using diffusion and score-matching models,” arXiv preprint arXiv:2209.12104, 2022.
  43. L. Cai, H. Gao, and S. Ji, “Multi-stage variational auto-encoders for coarse-to-fine image generation,” in Proceedings of the 2019 SIAM International Conference on Data Mining.   SIAM, 2019, pp. 630–638.
  44. Y. Ma, X. Liu, S. Bai, L. Wang, D. He, and A. Liu, “Coarse-to-fine image inpainting via region-wise convolutions and non-local correlation.” in IJCAI, 2019, pp. 3123–3129.
  45. Z. Feng, L. Wen, P. Wang, B. Yan, X. Wu, J. Zhou, and Y. Wang, “Diffdp: Radiotherapy dose prediction via a diffusion model,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2023, pp. 191–201.
  46. M. A. Wajid and A. Zafar, “Multimodal fusion: A review, taxonomy, open challenges, research roadmap and future directions,” Neutrosophic Sets and Systems, vol. 45, no. 1, p. 8, 2021.
  47. H. Hermessi, O. Mourali, and E. Zagrouba, “Multimodal medical image fusion review: Theoretical background and recent advances,” Signal Processing, vol. 183, p. 108036, 2021.
  48. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  49. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  50. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International Conference on Machine Learning.   PMLR, 2021, pp. 8162–8171.
  51. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502, 2020.
  52. Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19.
  53. S. d’Ascoli, H. Touvron, M. L. Leavitt, A. S. Morcos, G. Biroli, and L. Sagun, “Convit: Improving vision transformers with soft convolutional inductive biases,” in International Conference on Machine Learning.   PMLR, 2021, pp. 2286–2296.
  54. K. Yuan, S. Guo, Z. Liu, A. Zhou, F. Yu, and W. Wu, “Incorporating convolution designs into visual transformers,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 579–588.
  55. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017.
  56. A. Babier, B. Zhang, R. Mahmood, K. L. Moore, T. G. Purdie, A. L. McNiven, and T. C. Chan, “Openkbp: the open-access knowledge-based planning grand challenge and dataset,” Medical Physics, vol. 48, no. 9, pp. 5549–5561, 2021.
  57. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  58. S. Liu, J. Zhang, T. Li, H. Yan, and J. Liu, “A cascade 3d u-net for dose prediction in radiotherapy,” Medical physics, vol. 48, no. 9, pp. 5574–5582, 2021.
Citations (4)

Summary

We haven't generated a summary for this paper yet.