Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numbers of the form $k+f(k)$ (2306.16035v1)

Published 28 Jun 2023 in math.NT

Abstract: For a function $f\colon \mathbb{N}\to\mathbb{N}$, let $$ N+_f(x)={n\leq x: n=k+f(k) \mbox{ for some } k}. $$ Let $\tau(n)=\sum_{d|n}1$ be the divisor function, $\omega(n)=\sum_{p|n}1$ be the prime divisor function, and $\varphi(n)=#{1\leq k\leq n: \gcd(k,n)=1 }$ be Euler's totient function. We show that \begin{align*} &(1) \quad x \ll N+_{\omega}(x), \ &(2) \quad x\ll N+_{\tau}(x) \leq 0.94x, \ &(3) \quad x \ll N+_{\varphi}(x) \leq 0.93x. \end{align*}

Summary

We haven't generated a summary for this paper yet.