Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Capturing the Diffusive Behavior of the Multiscale Linear Transport Equations by Asymptotic-Preserving Convolutional DeepONets (2306.15891v3)

Published 28 Jun 2023 in cs.LG

Abstract: In this paper, we introduce two types of novel Asymptotic-Preserving Convolutional Deep Operator Networks (APCONs) designed to address the multiscale time-dependent linear transport problem. We observe that the vanilla physics-informed DeepONets with modified MLP may exhibit instability in maintaining the desired limiting macroscopic behavior. Therefore, this necessitates the utilization of an asymptotic-preserving loss function. Drawing inspiration from the heat kernel in the diffusion equation, we propose a new architecture called Convolutional Deep Operator Networks, which employ multiple local convolution operations instead of a global heat kernel, along with pooling and activation operations in each filter layer. Our APCON methods possess a parameter count that is independent of the grid size and are capable of capturing the diffusive behavior of the linear transport problem. Finally, we validate the effectiveness of our methods through several numerical examples.

Citations (5)

Summary

We haven't generated a summary for this paper yet.