Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Two Stream Decision Level Fusion of Vision and Inertial Sensors Data for Automatic Multimodal Human Activity Recognition System (2306.15765v1)

Published 27 Jun 2023 in cs.CV

Abstract: This paper presents a novel multimodal human activity recognition system. It uses a two-stream decision level fusion of vision and inertial sensors. In the first stream, raw RGB frames are passed to a part affinity field-based pose estimation network to detect the keypoints of the user. These keypoints are then pre-processed and inputted in a sliding window fashion to a specially designed convolutional neural network for the spatial feature extraction followed by regularized LSTMs to calculate the temporal features. The outputs of LSTM networks are then inputted to fully connected layers for classification. In the second stream, data obtained from inertial sensors are pre-processed and inputted to regularized LSTMs for the feature extraction followed by fully connected layers for the classification. At this stage, the SoftMax scores of two streams are then fused using the decision level fusion which gives the final prediction. Extensive experiments are conducted to evaluate the performance. Four multimodal standard benchmark datasets (UP-Fall detection, UTD-MHAD, Berkeley-MHAD, and C-MHAD) are used for experimentations. The accuracies obtained by the proposed system are 96.9 %, 97.6 %, 98.7 %, and 95.9 % respectively on the UP-Fall Detection, UTDMHAD, Berkeley-MHAD, and C-MHAD datasets. These results are far superior than the current state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.