Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lie Admissible Triple Algebras: The Connection Algebra of Symmetric Spaces (2306.15582v3)

Published 27 Jun 2023 in math.DG

Abstract: Associated to a symmetric space there is a canonical connection with zero torsion and parallel curvature. This connection acts as a binary operator on the vector space of smooth sections of the tangent bundle, and it is linear with respect to the real numbers. Thus the smooth section of the tangent bundle together with the connection form an algebra we call the connection algebra. The constraints of zero torsion and constant curvature makes the connection algebra into a Lie admissible triple algebra. This is a type of algebra that generalises pre-Lie algebras, and it can be embedded into a post-Lie algebra in a canonical way that generalises the canonical embedding of Lie triple systems into Lie algebras. The free Lie admissible triple algebra can be described by incorporating triple-brackets into the leaves of rooted (non-planar) trees.

Citations (5)

Summary

We haven't generated a summary for this paper yet.