Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Static Warning Identification via Path-based Semantic Representation (2306.15568v1)

Published 27 Jun 2023 in cs.SE

Abstract: Despite their ability to aid developers in detecting potential defects early in the software development life cycle, static analysis tools often suffer from precision issues (i.e., high false positive rates of reported alarms). To improve the availability of these tools, many automated warning identification techniques have been proposed to assist developers in classifying false positive alarms. However, existing approaches mainly focus on using hand-engineered features or statement-level abstract syntax tree token sequences to represent the defective code, failing to capture semantics from the reported alarms. To overcome the limitations of traditional approaches, this paper employs deep neural networks' powerful feature extraction and representation abilities to generate code semantics from control flow graph paths for warning identification. The control flow graph abstractly represents the execution process of a given program. Thus, the generated path sequences of the control flow graph can guide the deep neural networks to learn semantic information about the potential defect more accurately. In this paper, we fine-tune the pre-trained LLM to encode the path sequences and capture the semantic representations for model building. Finally, this paper conducts extensive experiments on eight open-source projects to verify the effectiveness of the proposed approach by comparing it with the state-of-the-art baselines.

Citations (1)

Summary

We haven't generated a summary for this paper yet.