Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Exploration-Exploitation Approach to Anti-lock Brake Systems (2306.14730v1)

Published 26 Jun 2023 in eess.SY and cs.SY

Abstract: Anti-lock Brake System (ABS) is a mandatory active safety feature on road vehicles with analogous systems for aircraft and locomotives. This feature aims to prevent locking of the wheels when braking and to improve the handling performance, as well as reduce stopping distance of the vehicle. Estimation uncertainties in the vehicle state and environment (road surface) are often neglected or handled separately from the ABS controller, leading to sub-optimal braking. In this paper, a Dual Control for Exploration-Exploitation (DCEE) approach is taken toward the ABS problem which achieves both accurate state (and environment) estimation and superior braking performance. Compared with popular Extremum Seeking methods, improvements of up to $15\%$ and $8.5\%$ are shown in stopping time and stopping distance, respectively. A Regularized Particle Filter with Markov Chain Monte Carlo step is used to estimate vehicle states and parameters of the Magic Formula tyre model that includes the peak friction coefficient for the environment. The effectiveness of the DCEE approach is demonstrated across a range of driving scenarios such as low and high speeds; snow, wet and dry roads and changing road surfaces.

Citations (2)

Summary

We haven't generated a summary for this paper yet.