Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A data-driven framework for dimensionality reduction and causal inference in climate fields (2306.14433v3)

Published 26 Jun 2023 in physics.ao-ph, cond-mat.stat-mech, and nlin.CD

Abstract: We propose a data-driven framework to simplify the description of spatiotemporal climate variability into few entities and their causal linkages. Given a high-dimensional climate field, the methodology first reduces its dimensionality into a set of regionally constrained patterns. Time-dependent causal links are then inferred in the interventional sense through the fluctuation-response formalism, as shown in Baldovin et al. (2020). These two steps allow to explore how regional climate variability can influence remote locations. To distinguish between true and spurious responses, we propose a novel analytical null model for the fluctuation-dissipation relation, therefore allowing for uncertainty estimation at a given confidence level. Finally, we select a set of metrics to summarize the results, offering a useful and simplified approach to explore climate dynamics. We showcase the methodology on the monthly sea surface temperature field at global scale. We demonstrate the usefulness of the proposed framework by studying few individual links as well as "link maps", visualizing the cumulative degree of causation between a given region and the whole system. Finally, each pattern is ranked in terms of its "causal strength", quantifying its relative ability to influence the system's dynamics. We argue that the methodology allows to explore and characterize causal relationships in high-dimensional spatiotemporal fields in a rigorous and interpretable way.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. M. Ghil and V. Lucarini, The physics of climate variability and climate change, Rev. Mod. Phys. 92, 035002 (2020).
  2. V. Lucarini and M. Chekroun, Theoretical tools for understanding the climate crisis from Hasselmann’s programme and beyond, Nat Rev Phys (2023)  (2023).
  3. S. Philander, El Niño Southern Oscillation phenomena., Nature 302, 295–301 (1983).
  4. J. M. Wallace and D. S. Gutzler, Teleconnections in the geopotential height field during the Northern Hemi- sphere winter, Monthly Weather Review 109 (1981).
  5. J. Chiang and A. Sobel, Tropical Tropospheric Temperature Variations Caused by ENSO and Their Influence on the Remote Tropical Climate, Journal of Climate , 2616–2631 (2002a).
  6. A. Tsonis, K. Swanson, and P. Roebber, What Do Networks Have to Do with Climate?, Bulletin of the American Meteorological Society 87, 585–595 (2006).
  7. V. Lucarini, Revising and Extending the Linear Response Theory for Statistical Mechanical Systems: Evaluating Observables as Predictors and Predictands, J Stat Phys 173, 1698–1721 (2018).
  8. M. Baldovin, F. Cecconi, and A. Vulpiani, Understanding causation via correlations and linear response theory, Physical Review Research 2, 043436 (2020).
  9. B. Russell, On the notion of cause, Proceedings of the Aristotelian Society 8 13, 1 (1913).
  10. D. Bohm, Causality and Chance in Modern Physics (Routledge & Kegan Paul and D. Van Nostrand, 1957).
  11. N. Cartwright, Causal laws and effective strategies, Noûs 13, 419 (1979).
  12. C. Rovelli, How Oriented Causation Is Rooted into Thermodynamics, Philosophy of Physics 1(1), 1–14 (2023).
  13. E. Adlam, Is there causation in fundamental physics? new insights from process matrices and quantum causal modelling, arXiv:2208.02721 https://doi.org/10.48550/arXiv.2208.02721.
  14. J. Ismael, Causal content and global laws: Grounding modality in experimental practice, in The Experimental Side of Modeling (University of Minnesota Press, 2018) pp. 168–188.
  15. J. Ismael, Reflections on the asymmetry of causation, Interface Focus 12, 20220081 (2023).
  16. C. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica 37, 424 (1969).
  17. T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000).
  18. L. Barnett, A. Barrett, and A. Seth, Granger causality and transfer entropy are equivalent for gaussian variables, Phys. Rev. Lett. 103, 238701 (2009).
  19. J. Pearl, Causal inference in statistics: An overview., Statistics Surveys 3, 96–146 (2009).
  20. I. Ebert-Uphoff and Y. Deng, Causal discovery for climate research using graphical models, J. Clim. 25, 5648–5665 (2012).
  21. R. Kubo, The fluctuation–dissipation theorem, Rep. Prog. Phys. 29, 255–284 (1966).
  22. D. Ruelle, A review of linear response theory for general differentiable dynamical systems, Nonlinearity 22, 855–870 (2009).
  23. V. Lucarini and M. Colangeli, Beyond the linear fluctuation-dissipation theorem: the role of causality, J. Stat. Mech. 05, P05013 (2012).
  24. U. Tomasini and V. Lucarini, Predictors and predictands of linear response in spatially extended systems, Eur. Phys. J. Spec. Top. 230, 2813–2832 (2021).
  25. N. Ay and D. Polani, Information flows in causal networks, Adv. Complex Syst. 11, 17 (2008).
  26. C. E. Leith, Climate response and fluctuation dissipation, Journal of The Atmospheric Science 32, 2022–2026 (1975).
  27. V. Lucarini, F. Ragone, and F. Lunkeit, Predicting Climate Change Using Response Theory: Global Averages and Spatial Patterns, J Stat Phys 166, 1036–1064 (2017).
  28. V. Lembo, V. Lucarini, and F. Ragone, Beyond forcing scenarios: Predicting climate change through response operators in a coupled general circulation model, Scientific Reports 10, 8668 (2020).
  29. A. Gritsun and G. Branstator, Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem, Journal of The Atmospheric Science , 2558–2575 (2007).
  30. A. Majda, B. Gershgorin, and Y. Yuan, Low-Frequency Climate Response and Fluctuation–Dissipation Theorems: Theory and Practice , Journal of the Atmospheric Sciences 67, 1186–1201 (2010).
  31. P. Hassanzadeh and Z. Kuang, The linear response function of an idealized atmosphere. part i: Construction using green’s functions and applications, Journal of The Atmospheric Science , 3423–3439 (2016a).
  32. P. Hassanzadeh and Z. Kuang, The linear response function of an idealized atmosphere. part ii: Implications for the practical use of the fluctuation–dissipation theorem and the role of operator’s nonnormality, Journal of The Atmospheric Science , 3441–3452 (2016b).
  33. A. Gritsun, Construction of response operators to small external forcings for atmospheric general circulation models with time periodic right-hand sides, Izvestiya, Atmospheric and Oceanic Physics 6, 748–756 (2010).
  34. A. Gritsun and V. Dymnikov, Barotropic Atmosphere Response to Small External Actions: Theory and Numerical Experiments, Izvestiya, Atmospheric and Oceanic Physics 35, 511 (2010).
  35. H. M. Christensen and J. Berner, From reliable weather forecasts to skilful climate response: A dynamical systems approach., Q. J. R. Meteorological Soc. 145, 1052–1069 (2019).
  36. D. Ruelle, General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium, Physics Letters A 245, 220 (1998).
  37. J. F. Gibson, J. Haclrow, and P. Cvitanović, Visualizing the geometry of state space in plane Couette flow, Journal of Fluid Mechanics 611, 107–130 (2008).
  38. F. Falasca and A. Bracco, Exploring the Tropical Pacific Manifold in models and observations, Phys. Rev. X 12, 021054 (2022).
  39. D. Faranda, G. Messori, and P. Yiou, Dynamical proxies of North Atlantic predictability and extremes, Sci. Rep. 7, 41278 (2017).
  40. J. Theiler, Estimating fractal dimension, J. Opt. Soc. Am. A 7, 1055 (1990).
  41. S. Klein, B. Soden, and N. Lau, Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge, J Clim 12, 917–932 (1999).
  42. A. Gill, Some simple solutions for heat-induced tropical circulation, Q. J. R. Meteorol. Soc. 106, 447 (1980).
  43. J. Chiang and A. Sobel, Tropical tropospheric temperature variations caused by enso and their influence on the remote tropical climate, Journal Of Climate 15, 2616–2631 (2002b).
  44. A. Lancichinetti and S. Fortunato, Community detection algorithms: A comparative analysis, Phys. Rev. E 80, 1 –11 (2009).
  45. A. L. Barabási, Network Science (Cambridge, UK: Cambridge University Press, 2016).
  46. M. Rosvall and C. Bergstrom, An information-theoretic framework for resolving community structure in complex networks, Proc. Natl. Acad. Sci. USA 104, 7327–7331 (2007).
  47. M. Rosvall and C. Bergstrom, Maps of random walks on complex networks reveal community structure, Proc. Natl. Acad. Sci. USA 105, 1118 –1123 (2008).
  48. M. Rosvall, D. Axelsson, and C. Bergstrom, The map equation, Eur. Phys. J. Spec. Top. 178, 13–23 (2009).
  49. A. Tantet and H. A. Dijkstra, An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature, Earth Syst. Dynam. 5, 1–14 (2014).
  50. M. J. Ring and R. A. Plumb, The response of a simplified gcm to axisymmetric forcings: Applicability of the fluctuation– dissipation theorem, Journal of The Atmospheric Sciences 65, 3880–3898 (2008).
  51. P. Imkeller and J. V. Storch, Stochastic Climate Models, Vol. 49 (Springer Basel AG, 2001).
  52. M. Allen and L. Smith, Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise , Journal of Climate 9, 3373–3404 (1996).
  53. A. Gritsun, G. Branstator, and A. Majda, Climate Response of Linear and Quadratic Functionals Using the Fluctuation–Dissipation Theorem, Journal of the Atmospheric Sciences 65, 2824 (2008).
  54. M. Zhao and Coauthors, The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs., Journal of Advances in Modeling Earth Systems 10, 691–734 (2018a).
  55. K. Hasselmann, Stochastic climate models part i. theory., Tellus 28, 473 (1976).
  56. C. Frankignoul and K. Hasselmann, Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability, Tellus 29, 289 (1977).
  57. C. Penland, Random Forcing and Forecasting Using Principal Oscillation Pattern Analysis, Monthly Weather Review 117, 2165 (1989).
  58. C. Penland and P. Sardeshmukh, The optimal growth of tropical sea surface temperature anomalies, Journal of Climate 8, 1999–2024 (1995).
  59. W. Moon and J. S. Wettlaufer, A unified nonlinear stochastic time series analysis for climate science, Sci. Rep. 7 (2017).
  60. N. Keyes, L. Giorgini, and J. Wettlaufer, Stochastic paleoclimatology: Modeling the epica ice core climate records, arXiv https://doi.org/10.48550/arXiv.2210.00308 (2023).
  61. W. Cai and et al., Pantropical climate interactions, Science 363, eaav4236 (2019).
  62. N. Keenlyside and M. Latif, Understanding Equatorial Atlantic Interannual Variability , Journal of Climate 20, 131 (2007).
  63. H. Ding, N. Keenlyside, and M. Latif, Impact of the Equatorial Atlantic on the El Niño Southern Oscillation, Clim Dyn 38, 1965–1972 (2012).
  64. M. Messiè and F. Chavez, Global Modes of Sea Surface Temperature Variability in Relation to Regional Climate Indices, Journal of Climate 24, 4314–4331 (2011).
  65. L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953).
  66. J. C. Robinson, A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems, Discrete and Continuous Dynamical Systems - B 9, 731 (2008).
  67. R. S. Martynov and Y. M. Nechepurenko, Finding the response matrix for a discrete linear stochastic dynamical system, J. Comput. Math. Phys. 44, 771–781 (2004).
  68. R. Martynov and Y. Nechepurenko, Finding the response matrix to the external action from a subspace for a discrete linear stochastic dynamical system, Comput. Math. and Math. Phys. 46, 1155–1167 (2006).
  69. A. Pendergrass and D. Hartmann, Two Modes of Change of the Distribution of Rain, Journal Of Climate 27, 8357–8371 (2014).
  70. B. Zhang, M. Zhao, and Z. Tan, Using a green’s function approach to diagnose the pattern effect in gfdl am4 and cm4, Journal of Climate , 1105–1124 (2023).
  71. H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of educational psychology 24(6), 417 (1933).
  72. H. v. Storch and F. W. Zwiers, Statistical Analysis in Climate Research (Cambridge University Press, 1999).
  73. D. Dommenget and M. Latif, A cautionary note on the interpretation of eofs, Journal of Climate 15, 216–225 (2002).
  74. R. Kawamura, A rotated eof analysis of global sea surface temperature variability with interannual interdecadal scales, J. Phys. Oceanogr. 24, 707–715 (1994).
  75. L. Saul and S. Roweis, Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds, J. Machine Learn. Res. 4, 119 (2003).
  76. J. Tenenbaum, V. de Silva, and J. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science 290, 2319 (2000).
  77. L. van der Maaten and G. Hinton, Visualizing data using t-sne, Journal of Machine Learning Research 9, 2579 (2008).
  78. L. McInnes, J. Healy, and J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction, arXiv arXiv:1802.03426v3 (2020).
  79. D. Bueso, M. Piles, and G. Camps-Valls, Nonlinear pca for spatio-temporal analysis of earth observation data, IEEE Transactions on Geoscience and Remote Sensing 58, 5752 (2020).
  80. K. Lee and K. T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deepconvolutional autoencoders, J. Comput. Phys. 404, 108973 (2020).
  81. C. Dalelane, K. Winderlich, and A. Walter, Evaluation of global teleconnections in CMIP6 climate projections using complex networks, Earth Syst. Dynam. 14, 17–37 (2023).
  82. L. Novi, A. Bracco, and Falasca, Uncovering marine connectivity through sea surface temperature, Sci Rep 11, 8839 (2021).
  83. L. Novi and A. Bracco, Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle, Commun Biol 5, 1359 (2022).
  84. D. Edler, A. Holmgren, and M. Rosvall, The MapEquation software package (2022).
  85. R. Courant and D. Hilbert, Methods of Mathematical Physics (First English Edition) (Julius Springer, 2004).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com