Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Runtime optimization of acquisition trajectories for X-ray computed tomography with a robotic sample holder (2306.13786v1)

Published 23 Jun 2023 in cs.RO

Abstract: Tomographic imaging systems are expected to work with a wide range of samples that house complex structures and challenging material compositions, which can influence image quality in a bad way. Complex samples increase total measurement duration and may introduce beam-hardening artifacts that lead to poor reconstruction image quality. This work presents an online trajectory optimization method for an X-ray computed tomography system with a robotic sample holder. The proposed method reduces measurement time and increases reconstruction image quality by generating an optimized spherical trajectory for the given sample without prior knowledge. The trajectory is generated successively at runtime based on intermediate sample measurements. We present experimental results with the robotic sample holder where two sample measurements using an optimized spherical trajectory achieve improved reconstruction quality compared to a conventional spherical trajectory. Our results demonstrate the ability of our system to increase reconstruction image quality and avoid artifacts at runtime when no prior information about the sample is provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. E. Pekel, F. Schaff, M. Dierolf, F. Pfeiffer, and T. Lasser, “X-ray computed tomography with seven degree of freedom robotic sample holder,” Engineering Research Express, vol. 4, no. 3, p. 035022, aug 2022. [Online]. Available: https://doi.org/10.1088/2631-8695/ac8224
  2. E. Pekel, M. Dierolf, F. Pfeiffer, and T. Lasser, “Spherical acquisition trajectories for x-ray computed tomography with a robotic sample holder,” 2023. [Online]. Available: https://arxiv.org/abs/2305.17664
  3. P. Wu, N. Sheth, A. Sisniega, A. Uneri, R. Han, R. Vijayan, P. Vagdargi, B. Kreher, H. Kunze, G. Kleinszig et al., “C-arm orbits for metal artifact avoidance (maa) in cone-beam ct,” Physics in Medicine & Biology, vol. 65, no. 16, p. 165012, 2020.
  4. G. J. Gang, J. H. Siewerdsen, and J. W. Stayman, “Non-circular ct orbit design for elimination of metal artifacts,” in Medical imaging 2020: physics of medical imaging, vol. 11312.   SPIE, 2020, pp. 531–536.
  5. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3.   IEEE, 2004, pp. 2149–2154.
  6. T. Lasser, M. Hornung, and D. Frank, “elsa - an elegant framework for tomographic reconstruction,” in 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, S. Matej and S. D. Metzler, Eds., vol. 11072, International Society for Optics and Photonics.   SPIE, 2019, pp. 570 – 573. [Online]. Available: https://doi.org/10.1117/12.2534833
  7. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source software, vol. 3, no. 3.2.   Kobe, Japan, 2009, p. 5.
  8. D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry of complex robotic software: a moveit! case study,” 2014.
  9. I. A. Sucan and S. Chitta, “MoveIt: [online],” http://moveit.ros.org/.
  10. E. FRANKA, “franka ros,” https://github.com/frankaemika/franka_ros, 2021.
  11. G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
  12. L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory programming,” 1998.
  13. K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, “Healpix: A framework for high‐resolution discretization and fast analysis of data distributed on the sphere,” The Astrophysical Journal, vol. 622, pp. 759–771, 2005.
  14. A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset, E. Hivon, and K. Gorski, “healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in python,” Journal of Open Source Software, vol. 4, no. 35, p. 1298, Mar. 2019. [Online]. Available: https://doi.org/10.21105/joss.01298
  15. J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.
  16. G. Weber, “X-ray attenuation & absorption calculator [online],” https://web-docs.gsi.de/~stoe_exp/web_programs/x_ray_absorption/index.php.
Citations (2)

Summary

We haven't generated a summary for this paper yet.