Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curvature-enhanced Graph Convolutional Network for Biomolecular Interaction Prediction (2306.13699v1)

Published 23 Jun 2023 in q-bio.QM, cs.AI, cs.LG, and q-bio.BM

Abstract: Geometric deep learning has demonstrated a great potential in non-Euclidean data analysis. The incorporation of geometric insights into learning architecture is vital to its success. Here we propose a curvature-enhanced graph convolutional network (CGCN) for biomolecular interaction prediction, for the first time. Our CGCN employs Ollivier-Ricci curvature (ORC) to characterize network local structures and to enhance the learning capability of GCNs. More specifically, ORCs are evaluated based on the local topology from node neighborhoods, and further used as weights for the feature aggregation in message-passing procedure. Our CGCN model is extensively validated on fourteen real-world bimolecular interaction networks and a series of simulated data. It has been found that our CGCN can achieve the state-of-the-art results. It outperforms all existing models, as far as we know, in thirteen out of the fourteen real-world datasets and ranks as the second in the rest one. The results from the simulated data show that our CGCN model is superior to the traditional GCN models regardless of the positive-to-negativecurvature ratios, network densities, and network sizes (when larger than 500).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” Advances in neural information processing systems, vol. 29, 2016.
  2. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” in International conference on machine learning.   PMLR, 2017, pp. 1263–1272.
  3. Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi, “Nodeaug: Semi-supervised node classification with data augmentation,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 207–217.
  4. C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous graph neural network,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 793–803.
  5. Z. Zhang, J. Cai, Y. Zhang, and J. Wang, “Learning hierarchy-aware knowledge graph embeddings for link prediction,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 03, 2020, pp. 3065–3072.
  6. J. Wu, J. He, and J. Xu, “Net: Degree-specific graph neural networks for node and graph classification,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 406–415.
  7. M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning architecture for graph classification,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
  8. D. Jiang, Z. Wu, C.-Y. Hsieh, G. Chen, B. Liao, Z. Wang, C. Shen, D. Cao, J. Wu, and T. Hou, “Could graph neural networks learn better molecular representation for drug discovery? a comparison study of descriptor-based and graph-based models,” Journal of cheminformatics, vol. 13, no. 1, pp. 1–23, 2021.
  9. X. Li, X. Yan, Q. Gu, H. Zhou, D. Wu, and J. Xu, “Deepchemstable: chemical stability prediction with an attention-based graph convolution network,” Journal of chemical information and modeling, vol. 59, no. 3, pp. 1044–1049, 2019.
  10. E. N. Feinberg, D. Sur, Z. Wu, B. E. Husic, H. Mai, Y. Li, S. Sun, J. Yang, B. Ramsundar, and V. S. Pande, “PotentialNet for molecular property prediction,” ACS central science, vol. 4, no. 11, pp. 1520–1530, 2018.
  11. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.
  12. S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks: a comprehensive review,” Computational Social Networks, vol. 6, no. 1, pp. 1–23, 2019.
  13. J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural networks: A review of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.
  14. M. Welling and T. N. Kipf, “Semi-supervised classification with graph convolutional networks,” in International Conference on Learning Representations (ICLR 2017), 2016.
  15. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
  16. K. X. W. H. J. Leskovec and S. Jegelka, “How powerful are graph neural networks,” ICLR, 2019.
  17. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in neural information processing systems, vol. 30, 2017.
  18. D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molecular fingerprints,” in Advances in neural information processing systems, 2015, pp. 2224–2232.
  19. M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric deep learning: going beyond Euclidean data,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.
  20. M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep learning: Grids, groups, graphs, geodesics, and gauges,” arXiv preprint arXiv:2104.13478, 2021.
  21. K. Atz, F. Grisoni, and G. Schneider, “Geometric deep learning on molecular representations,” Nature Machine Intelligence, vol. 3, no. 12, pp. 1023–1032, 2021.
  22. A. Samal, R. Sreejith, J. Gu, S. Liu, E. Saucan, and J. Jost, “Comparative analysis of two discretizations of ricci curvature for complex networks,” Scientific reports, vol. 8, no. 1, pp. 1–16, 2018.
  23. G. Perelman, “Ricci flow with surgery on three-manifolds,” arXiv preprint math/0303109, 2003.
  24. D. Bakry and M. Émery, “Diffusions hypercontractives,” in Séminaire de Probabilités XIX 1983/84.   Springer, 1985, pp. 177–206.
  25. F. R. Chung and S.-T. Yau, “Logarithmic harnack inequalities,” Mathematical Research Letters, vol. 3, no. 6, pp. 793–812, 1996.
  26. K.-T. Sturm et al., “On the geometry of metric measure spaces,” Acta mathematica, vol. 196, no. 1, pp. 65–131, 2006.
  27. Y. Ollivier, “Ricci curvature of metric spaces,” Comptes Rendus Mathematique, vol. 345, no. 11, pp. 643–646, 2007.
  28. J. Lott and C. Villani, “Ricci curvature for metric-measure spaces via optimal transport,” Annals of Mathematics, pp. 903–991, 2009.
  29. Y. Ollivier, “Ricci curvature of markov chains on metric spaces,” Journal of Functional Analysis, vol. 256, no. 3, pp. 810–864, 2009.
  30. A.-I. Bonciocat and K.-T. Sturm, “Mass transportation and rough curvature bounds for discrete spaces,” Journal of Functional Analysis, vol. 256, no. 9, pp. 2944–2966, 2009.
  31. R. Forman, “Bochner’s method for cell complexes and combinatorial Ricci curvature,” Discrete and Computational Geometry, vol. 29, no. 3, pp. 323–374, 2003.
  32. R. Sreejith, K. Mohanraj, J. Jost, E. Saucan, and A. Samal, “Forman curvature for complex networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2016, no. 6, p. 063206, 2016.
  33. E. Saucan and M. Weber, “Forman’s ricci curvature-from networks to hypernetworks,” in International Conference on Complex Networks and their Applications.   Springer, 2018, pp. 706–717.
  34. C.-C. Ni, Y.-Y. Lin, J. Gao, X. D. Gu, and E. Saucan, “Ricci curvature of the internet topology,” in 2015 IEEE Conference on Computer Communications (INFOCOM).   IEEE, 2015, pp. 2758–2766.
  35. C.-C. Ni, Y.-Y. Lin, F. Luo, and J. Gao, “Community detection on networks with Ricci flow,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.
  36. J. Sia, E. Jonckheere, and P. Bogdan, “Ollivier-Ricci curvature-based method to community detection in complex networks,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.
  37. R. S. Sandhu, T. T. Georgiou, and A. R. Tannenbaum, “Ricci curvature: An economic indicator for market fragility and systemic risk,” Science advances, vol. 2, no. 5, p. e1501495, 2016.
  38. R. Sandhu, T. Georgiou, E. Reznik, L. Zhu, I. Kolesov, Y. Senbabaoglu, and A. Tannenbaum, “Graph curvature for differentiating cancer networks,” Scientific reports, vol. 5, no. 1, pp. 1–13, 2015.
  39. H. Farooq, Y. Chen, T. T. Georgiou, A. Tannenbaum, and C. Lenglet, “Network curvature as a hallmark of brain structural connectivity,” Nature communications, vol. 10, no. 1, pp. 1–11, 2019.
  40. J. Wee and K. Xia, “Forman persistent ricci curvature (FPRC)-based machine learning models for protein–ligand binding affinity prediction,” Briefings in Bioinformatics, vol. 22, no. 6, p. bbab136, 2021.
  41. ——, “Ollivier persistent ricci curvature-based machine learning for the protein–ligand binding affinity prediction,” Journal of Chemical Information and Modeling, vol. 61, no. 4, pp. 1617–1626, 2021.
  42. J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein, “Understanding over-squashing and bottlenecks on graphs via curvature,” International Conference on Learning Representations (ICLR 2022), 2021.
  43. Z. Ye, K. S. Liu, T. Ma, J. Gao, and C. Chen, “Curvature graph network,” in International Conference on Learning Representations, 2019.
  44. H. Li, J. Cao, J. Zhu, Y. Liu, Q. Zhu, and G. Wu, “Curvature graph neural network,” Information Sciences, vol. 592, pp. 50–66, 2022.
  45. S. Glass, S. Spasov, and P. Liò, “RicciNets: Curvature-guided pruning of high-performance neural networks using Ricci flow,” 2020.
  46. J. Li, X. Fu, Q. Sun, C. Ji, J. Tan, J. Wu, and H. Peng, “Curvature graph generative adversarial networks,” in Proceedings of the ACM Web Conference 2022, 2022, pp. 1528–1537.
  47. M. Yang, M. Zhou, L. Pan, and I. King, “Hyperbolic curvature graph neural network,” arXiv preprint arXiv:2212.01793, 2022.
  48. A. New, M. J. Pekala, N. Q. Le, J. Domenico, C. D. Piatko, and C. D. Stiles, “Curvature-informed multi-task learning for graph networks,” in ICML 2022 2nd AI for Science Workshop, 2022. [Online]. Available: https://openreview.net/forum?id=m5RYtApKFOg
  49. S. Wang, X. Wei, C. N. Nogueira dos Santos, Z. Wang, R. Nallapati, A. Arnold, B. Xiang, P. S. Yu, and I. F. Cruz, “Mixed-curvature multi-relational graph neural network for knowledge graph completion,” in Proceedings of the Web Conference 2021, 2021, pp. 1761–1771.
  50. X. Fu, J. Li, J. Wu, Q. Sun, C. Ji, S. Wang, J. Tan, H. Peng, and S. Y. Philip, “ACE-HGNN: Adaptive curvature exploration hyperbolic graph neural network,” in 2021 IEEE International Conference on Data Mining (ICDM).   IEEE, 2021, pp. 111–120.
  51. K. Huang, C. Xiao, L. M. Glass, M. Zitnik, and J. Sun, “SkipGNN: predicting molecular interactions with skip-graph networks,” Scientific reports, vol. 10, no. 1, pp. 1–16, 2020.
  52. N. Xu, P. Wang, L. Chen, J. Tao, and J. Zhao, “MR-GNN: Multi-resolution and dual graph neural network for predicting structured entity interactions,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019, pp. 3968–3974.
  53. C. Zhao, S. Liu, F. Huang, S. Liu, and W. Zhang, “CSGNN: Contrastive self-supervised graph neural network for molecular interaction prediction.” in IJCAI, 2021, pp. 3756–3763.
  54. X. Lin, Z. Quan, Z.-J. Wang, T. Ma, and X. Zeng, “KGNN: Knowledge graph neural network for drug-drug interaction prediction.” in IJCAI, vol. 380, 2020, pp. 2739–2745.
  55. Y. Wang, Y. Min, X. Chen, and J. Wu, “Multi-view graph contrastive representation learning for drug-drug interaction prediction,” in Proceedings of the Web Conference 2021, 2021, pp. 2921–2933.
  56. Q. Ye, C.-Y. Hsieh, Z. Yang, Y. Kang, J. Chen, D. Cao, S. He, and T. Hou, “A unified drug–target interaction prediction framework based on knowledge graph and recommendation system,” Nature communications, vol. 12, no. 1, pp. 1–12, 2021.
  57. C. Shen, J. Luo, W. Ouyang, P. Ding, and X. Chen, “IDDkin: network-based influence deep diffusion model for enhancing prediction of kinase inhibitors,” Bioinformatics, vol. 36, no. 22-23, pp. 5481–5491, 2020.
  58. D. Jiang, C.-Y. Hsieh, Z. Wu, Y. Kang, J. Wang, E. Wang, B. Liao, C. Shen, L. Xu, J. Wu et al., “Interactiongraphnet: A novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions,” Journal of medicinal chemistry, vol. 64, no. 24, pp. 18 209–18 232, 2021.
  59. Y. Lin, L. Lu, and S.-T. Yau, “Ricci curvature of graphs,” Tohoku Mathematical Journal, Second Series, vol. 63, no. 4, pp. 605–627, 2011.
  60. Y. Lin and S.-T. Yau, “Ricci curvature and eigenvalue estimate on locally finite graphs,” Mathematical research letters, vol. 17, no. 2, pp. 343–356, 2010.
  61. K. Luck, D.-K. Kim, L. Lambourne, K. Spirohn, B. E. Begg, W. Bian, R. Brignall, T. Cafarelli, F. J. Campos-Laborie, B. Charloteaux et al., “A reference map of the human binary protein interactome,” Nature, vol. 580, no. 7803, pp. 402–408, 2020.
  62. Z. Marinka, S. Rok, M. Sagar, and L. Jure, “BioSNAP Datasets Stanford biomedical network dataset collection,” http://snap.stanford.edu/biodata, Aug. 2018.
  63. M. Tsubaki, K. Tomii, and J. Sese, “Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences,” Bioinformatics, vol. 35, no. 2, pp. 309–318, 2019.
  64. D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda et al., “DrugBank 5.0: a major update to the DrugBank database for 2018,” Nucleic acids research, vol. 46, no. D1, pp. D1074–D1082, 2018.
  65. J. Zhu, Y. Liu, Y. Zhang, Z. Chen, and X. Wu, “Multi-attribute discriminative representation learning for prediction of adverse drug-drug interaction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
  66. J. Piñero, À. Bravo, N. Queralt-Rosinach, A. Gutiérrez-Sacristán, J. Deu-Pons, E. Centeno, J. García-García, F. Sanz, and L. I. Furlong, “DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants,” Nucleic acids research, p. gkw943, 2016.
  67. B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp. 701–710.
  68. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information network embedding,” in Proceedings of the 24th international conference on world wide web, 2015, pp. 1067–1077.
  69. A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 2016, pp. 855–864.
  70. D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 2016, pp. 1225–1234.
  71. L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine learning research, vol. 9, no. 11, 2008.
Citations (5)

Summary

We haven't generated a summary for this paper yet.