Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Risk-averse Bayesian Optimization for Controller Tuning (2306.13479v1)

Published 23 Jun 2023 in eess.SY, cs.RO, and cs.SY

Abstract: Controller tuning and parameter optimization are crucial in system design to improve both the controller and underlying system performance. Bayesian optimization has been established as an efficient model-free method for controller tuning and adaptation. Standard methods, however, are not enough for high-precision systems to be robust with respect to unknown input-dependent noise and stable under safety constraints. In this work, we present a novel data-driven approach, RaGoOSE, for safe controller tuning in the presence of heteroscedastic noise, combining safe learning with risk-averse Bayesian optimization. We demonstrate the method for synthetic benchmark and compare its performance to established BO-based tuning methods. We further evaluate RaGoOSE performance on a real precision-motion system utilized in semiconductor industry applications and compare it to the built-in auto-tuning routine.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. X. Li, S.-L. Chen, J. Ma, C. S. Teo, and K. K. Tan, “Data-driven model-free iterative tuning approach for smooth and accurate tracking,” in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018, pp. 593–598.
  2. M. Li, Y. Zhu, K. Yang, and C. Hu, “A data-driven variable-gain control strategy for an ultra-precision wafer stage with accelerated iterative parameter tuning,” IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp. 1179–1189, 2015.
  3. F. Song, Y. Liu, W. Jin, J. Tan, and W. He, “Data-driven feedforward learning with force ripple compensation for wafer stages: A variable-gain robust approach,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2020.
  4. M. Khosravi, V. Behrunani, R. S. Smith, A. Rupenyan, and J. Lygeros, “Cascade control: Data-driven tuning approach based on bayesian optimization,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 382–387, 2020.
  5. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the loop: A review of Bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.
  6. R. R. Duivenvoorden, F. Berkenkamp, N. Carion, A. Krause, and A. P. Schoellig, “Constrained Bayesian optimization with particle swarms for safe adaptive controller tuning,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 11 800 – 11 807, 2017, 20th IFAC World Congress.
  7. A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic lqr tuning based on gaussian process global optimization,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 270–277.
  8. F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics,” Machine Learning, pp. 1–35, 2021.
  9. R. Guzman, R. Oliveira, and F. Ramos, “Heteroscedastic bayesian optimisation for stochastic model predictive control,” IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 56–63, 2020.
  10. C. König, M. Turchetta, J. Lygeros, A. Rupenyan, and A. Krause, “Safe and efficient model-free adaptive control via bayesian optimization,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 9782–9788.
  11. P. Brunzema, A. von Rohr, and S. Trimpe, “On controller tuning with time-varying bayesian optimization,” arXiv preprint arXiv:2207.11120, 2022.
  12. J. Gardner, M. Kusner, Zhixiang, K. Weinberger, and J. Cunningham, “Bayesian optimization with inequality constraints,” in Proceedings of International Conference on Machine Learning (ICML), ser. Proceedings of Machine Learning Research, vol. 32, no. 2.   Bejing, China: PMLR, 22–24 Jun 2014, pp. 937–945.
  13. M. Khosravi, V. Behrunani, P. Myszkorowski, R. S. Smith, A. Rupenyan, and J. Lygeros, “Performance-driven cascade controller tuning with bayesian optimization,” IEEE Transactions on Industrial Electronics, p. 1–1, 2021.
  14. D. Piga, S. Formentin, and A. Bemporad, “Direct data-driven control of constrained systems,” IEEE Transactions on Control Systems Technology, vol. 26, no. 4, pp. 1422––1429, Jul 2018.
  15. F. Sorourifar, G. Makrygirgos, A. Mesbah, and J. A. Paulson, “A data-driven automatic tuning method for MPC under uncertainty using constrained Bayesian optimization,” arXiv:2011.11841, 2020.
  16. A. Rupenyan, M. Khosravi, and J. Lygeros, “Performance-based trajectory optimization for path following control using bayesian optimization,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 2116–2121.
  17. Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause, “Safe exploration for optimization with Gaussian processes,” in Proceedings of International Conference on Machine Learning (ICML), 2015.
  18. M. Fiducioso, S. Curi, B. Schumacher, M. Gwerder, and A. Krause, “Safe contextual bayesian optimization for sustainable room temperature pid control tuning,” in Proceedings of the 28th International Joint Conference on Artificial Intelligence.   AAAI Press, December 2019, pp. 5850–5856.
  19. M. Khosravi, C. Koenig, M. Maier, R. S. Smith, J. Lygeros, and A. Rupenyan, “Safety-aware cascade controller tuning using constrained bayesian optimization,” IEEE Transactions on Industrial Electronics, 2022.
  20. M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration for interactive machine learning,” in Advances in Neural Information Processing Systems (NeurIPS), 2019, pp. 2891–2901.
  21. I. Bogunovic, J. Scarlett, and V. Cevher, “Time-varying gaussian process bandit optimization,” in Artificial Intelligence and Statistics.   PMLR, 2016, pp. 314–323.
  22. K. Swersky, J. Snoek, and R. P. Adams, “Multi-task bayesian optimization,” Advances in neural information processing systems, vol. 26, 2013.
  23. R. Guzman, R. Oliveira, and F. Ramos, “Bayesian optimisation for robust model predictive control under model parameter uncertainty,” arXiv preprint arXiv:2203.00551, 2022.
  24. A. Makarova, I. Usmanova, I. Bogunovic, and A. Krause, “Risk-averse heteroscedastic bayesian optimization,” Advances in Neural Information Processing Systems, vol. 34, pp. 17 235–17 245, 2021.
  25. J. Kirschner and A. Krause, “Information directed sampling and bandits with heteroscedastic noise,” in Conference On Learning Theory (COLT), 2018.
  26. N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-theoretic regret bounds for gaussian process optimization in the bandit setting,” IEEE Transactions on Information Theory, vol. 58, no. 5, pp. 3250–3265, may 2012. [Online]. Available: https://doi.org/10.1109%2Ftit.2011.2182033
  27. J. Kennedy and R. Eberhart, “Particle swarm optimization,” vol. 4, pp. 1942–1948 vol.4, 1995.
Citations (5)

Summary

We haven't generated a summary for this paper yet.