Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reliable computation by large-alphabet formulas in the presence of noise (2306.13262v3)

Published 23 Jun 2023 in cs.IT and math.IT

Abstract: We present two new positive results for reliable computation using formulas over physical alphabets of size $q > 2$. First, we show that for logical alphabets of size $\ell = q$ the threshold for denoising using gates subject to $q$-ary symmetric noise with error probability $\varepsilon$ is strictly larger than that for Boolean computation, and is possible as long as signals remain distinguishable, i.e. $\epsilon < (q - 1) / q$, in the limit of large fan-in $k \rightarrow \infty$. We also determine the point at which generalized majority gates with bounded fan-in fail, and show in particular that reliable computation is possible for $\epsilon < (q - 1) / (q (q + 1))$ in the case of $q$ prime and fan-in $k = 3$. Secondly, we provide an example where $\ell < q$, showing that reliable Boolean computation can be performed using $2$-input ternary logic gates subject to symmetric ternary noise of strength $\varepsilon < 1/6$ by using the additional alphabet element for error signaling.

Citations (1)

Summary

We haven't generated a summary for this paper yet.