Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Log-Cumulant Based Estimation of Roughness Information in SAR imagery (2306.13200v1)

Published 22 Jun 2023 in cs.CV and cs.LG

Abstract: Synthetic Aperture Radar (SAR) image understanding is crucial in remote sensing applications, but it is hindered by its intrinsic noise contamination, called speckle. Sophisticated statistical models, such as the $\mathcal{G}0$ family of distributions, have been employed to SAR data and many of the current advancements in processing this imagery have been accomplished through extracting information from these models. In this paper, we propose improvements to parameter estimation in $\mathcal{G}0$ distributions using the Method of Log-Cumulants. First, using Bayesian modeling, we construct that regularly produce reliable roughness estimates under both $\mathcal{G}0_A$ and $\mathcal{G}0_I$ models. Second, we make use of an approximation of the Trigamma function to compute the estimated roughness in constant time, making it considerably faster than the existing method for this task. Finally, we show how we can use this method to achieve fast and reliable SAR image understanding based on roughness information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. N. Bouhlel and D. Rousseau, “Multi-temporal sar change detection using wavelet transforms,” in 2022 30th European Signal Processing Conference (EUSIPCO).   IEEE, 2022, pp. 538–542.
  2. K. Kayabol, “Model-based superpixel segmentation of sar images,” in 2015 23rd European Signal Processing Conference (EUSIPCO).   IEEE, 2015, pp. 1800–1804.
  3. J. F. R. Neto, A. M. Braga, R. C. Marques, and F. N. de Medeiros, “Level-set formulation based on an infinite series of sample moments for sar image segmentation,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 5, pp. 908–911, 2019.
  4. R. C. P. Marques, F. N. Medeiros, and J. S. Nobre, “Sar image segmentation based on level set approach and ga0 model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 2046–2057, 2011.
  5. J.-M. Nicolas and F. Tupin, “Statistical models for sar amplitude data: a unified vision through mellin transform and meijer functions,” in 2016 24th European Signal Processing Conference (EUSIPCO).   IEEE, 2016, pp. 518–522.
  6. A. C. Frery, H.-J. Muller, C. d. C. F. Yanasse, and S. J. S. Sant’Anna, “A model for extremely heterogeneous clutter,” IEEE transactions on geoscience and remote sensing, vol. 35, no. 3, pp. 648–659, 1997.
  7. F. Á. Rodrigues, J. R. Neto, R. P. Marques, F. S. de Medeiros, and J. S. Nobre, “Sar image segmentation using the roughness information,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 2, pp. 132–136, 2016.
  8. J. Gambini, J. Cassetti, M. M. Lucini, and A. C. Frery, “Parameter estimation in sar imagery using stochastic distances and asymmetric kernels,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 1, pp. 365–375, 2014.
  9. Y. Cui, Y. Yamaguchi, and J. Yang, “Bayesian-based parameter estimation of k distribution using method of logarithmic cumulants,” in Signal Processing, Communication and Computing (ICSPCC), 2012 IEEE International Conference on.   IEEE, 2012, pp. 162–166.
  10. M. E. Mejail, J. C. Jacobo-Berlles, A. C. Frery, and O. H. Bustos, “Classification of sar images using a general and tractable multiplicative model,” International Journal of Remote Sensing, vol. 24, no. 18, pp. 3565–3582, 2003.
  11. S. Cui, G. Schwarz, and M. Datcu, “A comparative study of statistical models for multilook sar images,” IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 10, pp. 1752–1756, 2014.
  12. J.-M. Nicolas, “Introduction aux statistiques de deuxième espèce: Applications des logs-moments et des logs-cumulants à l’analyse des lois d’images radar,” TS. Traitement du signal, vol. 19, no. 3, pp. 139–167, 2002.
  13. J. Cheng, G. Gao, W. Ding, X. Ku, and J. Sun, “An improved scheme for parameter estimation of g distribution model in high-resolution sar images,” Progress In Electromagnetics Research, vol. 134, pp. 23–46, 2013.
  14. A. Mood, F. A. Graybill, and D. Boes, “Introduction to the theory of statistics,. mcgraw-hill series in probability and statistics,” pp. 229–230, 1974.
  15. F. Qi and C. Mortici, “Some inequalities for the trigamma function in terms of the digamma function,” Applied Mathematics and Computation, vol. 271, pp. 502–511, 2015.

Summary

We haven't generated a summary for this paper yet.