Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved generic regularity of codimension-1 minimizing integral currents (2306.13191v2)

Published 22 Jun 2023 in math.DG and math.AP

Abstract: Let $\Gamma$ be a smooth, closed, oriented, $(n-1)$-dimensional submanifold of $\mathbb{R}{n+1}$. We show that there exist arbitrarily small perturbations $\Gamma'$ of $\Gamma$ with the property that minimizing integral $n$-currents with boundary $\Gamma'$ are smooth away from a set of Hausdorff dimension $\leq n-9-\varepsilon_n$, where $\varepsilon_n \in (0, 1]$ is a dimensional constant. This improves on our previous result (where we proved generic smoothness of minimizers in $9$ and $10$ ambient dimensions). The key ingredients developed here are a new method to estimate the full singular set of the foliation by minimizers and a proof of superlinear decay of closeness (near singular points) that holds even across non-conical scales.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. William K. Allard. On the first variation of a varifold: boundary behavior. Ann. of Math. (2), 101:418–446, 1975.
  2. Generic regularity for minimizing hypersurfaces in dimensions 9 and 10, Preprint, 2023.
  3. Quantitative stratification and the regularity of harmonic maps and minimal currents. Comm. Pure Appl. Math., 66(6):965–990, 2013.
  4. Ennio De Giorgi. Frontiere orientate di misura minima. Editrice Tecnico Scientifica, Pisa,, 1961. Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61.
  5. Generic regularity of free boundaries for the obstacle problem. Publ. Math. Inst. Hautes Études Sci., 132:181–292, 2020.
  6. Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. of Math. (2), 110(3):439–486, 1979.
  7. Area minimizing hypersurfaces with isolated singularities. J. Reine Angew. Math., 362:102–129, 1985.
  8. The singular structure and regularity of stationary varifolds. J. Eur. Math. Soc. (JEMS), 22(10):3305–3382, 2020.
  9. Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.
  10. Leon Simon. A strict maximum principle for area minimizing hypersurfaces. J. Differential Geom., 26(2):327–335, 1987.
  11. Leon Simon. Cylindrical tangent cones and the singular set of minimal submanifolds. J. Differential Geom., 38(3):585–652, 1993.
  12. Leon Simon. A general asymptotic decay lemma for elliptic problems. In Handbook of geometric analysis. No. 1, volume 7 of Adv. Lect. Math. (ALM), pages 381–411. Int. Press, Somerville, MA, 2008.
  13. Leon Simon. Stable minimal hypersurfaces in \varmathbb⁢RN+1+ℓ\varmathbbsuperscript𝑅𝑁1ℓ\varmathbb{R}^{N+1+\ell}italic_R start_POSTSUPERSCRIPT italic_N + 1 + roman_ℓ end_POSTSUPERSCRIPT with singular set an arbitrary closed K⊂{0}×\varmathbb⁢Rℓ𝐾0\varmathbbsuperscript𝑅ℓK\subset\{0\}\times\varmathbb{R}^{\ell}italic_K ⊂ { 0 } × italic_R start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT. Ann. of Math. (2), 197(3):1205–1234, 2023.
  14. Zhihan Wang. Mean Convex Smoothing of Mean Convex Cones. Geom. Funct. Anal., 34:263–301, 2024.
  15. Brian White. Regularity of area-minimizing hypersurfaces at boundaries with multiplicity. In Seminar on minimal submanifolds, volume 103 of Ann. of Math. Stud., pages 293–301. Princeton Univ. Press, Princeton, NJ, 1983.
  16. Brian White. Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math., 488:1–35, 1997.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com