CEMSSL: Conditional Embodied Self-Supervised Learning is All You Need for High-precision Multi-solution Inverse Kinematics of Robot Arms (2306.12718v2)
Abstract: In the field of signal processing for robotics, the inverse kinematics of robot arms presents a significant challenge due to multiple solutions caused by redundant degrees of freedom (DOFs). Precision is also a crucial performance indicator for robot arms. Current methods typically rely on conditional deep generative models (CDGMs), which often fall short in precision. In this paper, we propose Conditional Embodied Self-Supervised Learning (CEMSSL) and introduce a unified framework based on CEMSSL for high-precision multi-solution inverse kinematics learning. This framework enhances the precision of existing CDGMs by up to 2-3 orders of magnitude while maintaining their original properties. Furthermore, our method is extendable to other fields of signal processing where obtaining multi-solution data in advance is challenging, as well as to other problems involving multi-solution inverse processes.