Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Multimodal Information Fusion for Smart Healthcare: Mapping the Journey from Data to Wisdom (2306.11963v5)

Published 21 Jun 2023 in cs.IR

Abstract: Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey from data to information to knowledge to wisdom (DIKW) is explored through multimodal fusion for smart healthcare. We present a comprehensive review of multimodal medical data fusion focused on the integration of various data modalities. The review explores different approaches such as feature selection, rule-based systems, machine learning, deep learning, and natural language processing, for fusing and analyzing multimodal data. This paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the reviewed frameworks and theories, it proposes a generic framework for multimodal medical data fusion that aligns with the DIKW model. Moreover, it discusses future directions related to the four pillars of healthcare: Predictive, Preventive, Personalized, and Participatory approaches. The components of the comprehensive survey presented in this paper form the foundation for more successful implementation of multimodal fusion in smart healthcare. Our findings can guide researchers and practitioners in leveraging the power of multimodal fusion with the state-of-the-art approaches to revolutionize healthcare and improve patient outcomes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (202)
  1. R. L. Ackoff, “From data to wisdom,” Journal of applied systems analysis, vol. 16, no. 1, pp. 3–9, 1989.
  2. S. M. Fiore, J. Elias, E. Salas, N. W. Warner, and M. P. Letsky, “From data, to information, to knowledge: Measuring knowledge building in the context of collaborative cognition,” in Macrocognition metrics and scenarios, pp. 179–200, CRC Press, 2018.
  3. X. Tao, T. Pham, J. Zhang, J. Yong, W. P. Goh, W. Zhang, and Y. Cai, “Mining health knowledge graph for health risk prediction,” World Wide Web, vol. 23, pp. 2341–2362, 2020.
  4. J. Liang, Y. Li, Z. Zhang, D. Shen, J. Xu, X. Zheng, T. Wang, B. Tang, J. Lei, J. Zhang, et al., “Adoption of electronic health records (ehrs) in china during the past 10 years: consecutive survey data analysis and comparison of sino-american challenges and experiences,” Journal of medical Internet research, vol. 23, no. 2, p. e24813, 2021.
  5. Z. Zhang, E. P. Navarese, B. Zheng, Q. Meng, N. Liu, H. Ge, Q. Pan, Y. Yu, and X. Ma, “Analytics with artificial intelligence to advance the treatment of acute respiratory distress syndrome,” Journal of Evidence-Based Medicine, vol. 13, no. 4, pp. 301–312, 2020.
  6. E. Hossain, R. Rana, N. Higgins, J. Soar, P. D. Barua, A. R. Pisani, and K. Turner, “Use of ai/ml-enabled state-of-the-art method in electronic medical records: A systematic review,” Computers in Biology and Medicine, p. 106649, 2023.
  7. B. Ihnaini, M. Khan, T. A. Khan, S. Abbas, M. S. Daoud, M. Ahmad, and M. A. Khan, “A smart healthcare recommendation system for multidisciplinary diabetes patients with data fusion based on deep ensemble learning,” Computational Intelligence and Neuroscience, vol. 2021, 2021.
  8. Z. Xu, D. R. So, and A. M. Dai, “Mufasa: Multimodal fusion architecture search for electronic health records,” in Proceedings of the AAAI Conf. on Artificial Intelligence, vol. 35, pp. 10532–10540, 2021.
  9. Y. An, H. Zhang, Y. Sheng, J. Wang, and X. Chen, “Main: Multimodal attention-based fusion networks for diagnosis prediction,” in 2021 IEEE Int’l Conf. on Bioinformatics and Biomedicine (BIBM), pp. 809–816, IEEE, 2021.
  10. S. Malakar, S. D. Roy, S. Das, S. Sen, J. D. Velásquez, and R. Sarkar, “Computer based diagnosis of some chronic diseases: A medical journey of the last two decades,” Archives of Computational Methods in Engineering, pp. 1–43, 2022.
  11. A. Papa, M. Mital, P. Pisano, and M. Del Giudice, “E-health and wellbeing monitoring using smart healthcare devices: An empirical investigation,” Technological Forecasting and Social Change, vol. 153, p. 119226, 2020.
  12. E. Teixeira, H. Fonseca, F. Diniz-Sousa, L. Veras, G. Boppre, J. Oliveira, D. Pinto, A. J. Alves, A. Barbosa, R. Mendes, et al., “Wearable devices for physical activity and healthcare monitoring in elderly people: A critical review,” Geriatrics, vol. 6, no. 2, p. 38, 2021.
  13. A. Sheth, U. Jaimini, and H. Y. Yip, “How will the internet of things enable augmented personalized health?,” IEEE intelligent systems, vol. 33, no. 1, pp. 89–97, 2018.
  14. T. Shaik, X. Tao, N. Higgins, L. Li, R. Gururajan, X. Zhou, and U. R. Acharya, “Remote patient monitoring using artificial intelligence: Current state, applications, and challenges,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, p. e1485, 2023.
  15. X. Tao, T. B. Shaik, N. Higgins, R. Gururajan, and X. Zhou, “Remote patient monitoring using radio frequency identification (rfid) technology and machine learning for early detection of suicidal behaviour in mental health facilities,” Sensors, vol. 21, no. 3, p. 776, 2021.
  16. K. Mohammed, A. Zaidan, B. Zaidan, O. S. Albahri, M. Alsalem, A. S. Albahri, A. Hadi, and M. Hashim, “Real-time remote-health monitoring systems: a review on patients prioritisation for multiple-chronic diseases, taxonomy analysis, concerns and solution procedure,” Journal of medical systems, vol. 43, pp. 1–21, 2019.
  17. L. A. Durán-Vega, P. C. Santana-Mancilla, R. Buenrostro-Mariscal, J. Contreras-Castillo, L. E. Anido-Rifón, M. A. García-Ruiz, O. A. Montesinos-López, and F. Estrada-González, “An iot system for remote health monitoring in elderly adults through a wearable device and mobile application,” Geriatrics, vol. 4, no. 2, p. 34, 2019.
  18. S. Tian, W. Yang, J. M. Le Grange, P. Wang, W. Huang, and Z. Ye, “Smart healthcare: making medical care more intelligent,” Global Health Journal, vol. 3, no. 3, pp. 62–65, 2019.
  19. M. Senbekov, T. Saliev, Z. Bukeyeva, A. Almabayeva, M. Zhanaliyeva, N. Aitenova, Y. Toishibekov, I. Fakhradiyev, et al., “The recent progress and applications of digital technologies in healthcare: a review,” Int’l journal of telemedicine and applications, vol. 2020, 2020.
  20. M. S. Linet, T. L. Slovis, D. L. Miller, R. Kleinerman, C. Lee, P. Rajaraman, and A. Berrington de Gonzalez, “Cancer risks associated with external radiation from diagnostic imaging procedures,” CA: a cancer journal for clinicians, vol. 62, no. 2, pp. 75–100, 2012.
  21. X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, et al., “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” The lancet digital health, vol. 1, no. 6, pp. e271–e297, 2019.
  22. A. Garain, A. Basu, F. Giampaolo, J. D. Velasquez, and R. Sarkar, “Detection of covid-19 from ct scan images: A spiking neural network-based approach,” Neural Computing and Applications, vol. 33, no. 19, pp. 12591–12604, 2021.
  23. S. Das, S. D. Roy, S. Malakar, J. D. Velásquez, and R. Sarkar, “Bi-level prediction model for screening covid-19 patients using chest x-ray images,” Big Data Research, vol. 25, p. 100233, 2021.
  24. J. B. Awotunde, F. E. Ayo, R. G. Jimoh, R. O. Ogundokun, O. E. Matiluko, I. D. Oladipo, and M. Abdulraheem, “Prediction and classification of diabetes mellitus using genomic data,” in Intelligent IoT systems in personalized health care, pp. 235–292, Elsevier, 2021.
  25. H. Yu, H. Yan, L. Wang, J. Li, L. Tan, W. Deng, Q. Chen, G. Yang, F. Zhang, T. Lu, et al., “Five novel loci associated with antipsychotic treatment response in patients with schizophrenia: a genome-wide association study,” The Lancet Psychiatry, vol. 5, no. 4, pp. 327–338, 2018.
  26. S. Pai and G. D. Bader, “Patient similarity networks for precision medicine,” Journal of molecular biology, vol. 430, no. 18, pp. 2924–2938, 2018.
  27. J. N. Acosta, G. J. Falcone, P. Rajpurkar, and E. J. Topol, “Multimodal biomedical ai,” Nature Medicine, vol. 28, no. 9, pp. 1773–1784, 2022.
  28. O. Taiwo and A. E. Ezugwu, “Smart healthcare support for remote patient monitoring during covid-19 quarantine,” Informatics in medicine unlocked, vol. 20, p. 100428, 2020.
  29. C. Carlsten, S. Salvi, G. W. Wong, and K. F. Chung, “Personal strategies to minimise effects of air pollution on respiratory health: advice for providers, patients and the public,” European Respiratory Journal, vol. 55, no. 6, 2020.
  30. M. Hu, J. D. Roberts, G. P. Azevedo, and D. Milner, “The role of built and social environmental factors in covid-19 transmission: A look at america’s capital city,” Sustainable Cities and Society, vol. 65, p. 102580, 2021.
  31. E. A. Alvarez, M. Garrido, D. P. Ponce, G. Pizarro, A. A. Córdova, F. Vera, R. Ruiz, R. Fernández, J. D. Velásquez, E. Tobar, et al., “A software to prevent delirium in hospitalised older adults: development and feasibility assessment,” Age and Ageing, vol. 49, no. 2, pp. 239–245, 2020.
  32. T. J. Pollard, A. E. Johnson, J. D. Raffa, L. A. Celi, R. G. Mark, and O. Badawi, “The eicu collaborative research database, a freely available multi-center database for critical care research,” Scientific data, vol. 5, no. 1, pp. 1–13, 2018.
  33. A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi, and R. G. Mark, “Mimic-iii, a freely accessible critical care database,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.
  34. D. Azcona, K. McGuinness, and A. F. Smeaton, “A comparative study of existing and new deep learning methods for detecting knee injuries using the mrnet dataset,” arXiv preprint arXiv:2010.01947, 2020.
  35. G. Shih, C. C. Wu, S. S. Halabi, M. D. Kohli, L. M. Prevedello, T. S. Cook, A. Sharma, J. K. Amorosa, V. Arteaga, M. Galperin-Aizenberg, et al., “Augmenting the national institutes of health chest radiograph dataset with expert annotations of possible pneumonia,” Radiology: Artificial Intelligence, vol. 1, no. 1, p. e180041, 2019.
  36. P. Rajpurkar, J. Irvin, A. Bagul, D. Ding, T. Duan, H. Mehta, B. Yang, K. Zhu, D. Laird, R. L. Ball, et al., “Mura: Large dataset for abnormality detection in musculoskeletal radiographs,” arXiv preprint arXiv:1712.06957, 2017.
  37. S. S. Halabi, L. M. Prevedello, J. Kalpathy-Cramer, A. B. Mamonov, A. Bilbily, M. Cicero, I. Pan, L. A. Pereira, R. T. Sousa, N. Abdala, et al., “The rsna pediatric bone age machine learning challenge,” Radiology, vol. 290, no. 2, pp. 498–503, 2019.
  38. D. Demner-Fushman, M. D. Kohli, M. B. Rosenman, S. E. Shooshan, L. Rodriguez, S. Antani, G. R. Thoma, and C. J. McDonald, “Preparing a collection of radiology examinations for distribution and retrieval,” Journal of the American Medical Informatics Association, vol. 23, no. 2, pp. 304–310, 2016.
  39. J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A. Defazio, R. Stern, P. Johnson, M. Bruno, et al., “fastmri: An open dataset and benchmarks for accelerated mri,” arXiv preprint arXiv:1811.08839, 2018.
  40. J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, et al., “Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison,” in Proceedings of the AAAI Conf. on artificial intelligence, vol. 33, pp. 590–597, 2019.
  41. D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults,” Journal of cognitive neuroscience, vol. 19, no. 9, pp. 1498–1507, 2007.
  42. S. G. Armato III, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, et al., “The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans,” Medical physics, vol. 38, no. 2, pp. 915–931, 2011.
  43. K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, pp. 1045–1057, 2013.
  44. X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” in Proceedings of the IEEE Conf. on computer vision and pattern recognition, pp. 2097–2106, 2017.
  45. B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., “The multimodal brain tumor image segmentation benchmark (brats),” IEEE transactions on medical imaging, vol. 34, no. 10, pp. 1993–2024, 2014.
  46. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features,” Scientific data, vol. 4, no. 1, pp. 1–13, 2017.
  47. S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki, et al., “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge,” arXiv preprint arXiv:1811.02629, 2018.
  48. K. Tomczak, P. Czerwińska, and M. Wiznerowicz, “Review the cancer genome atlas (tcga): an immeasurable source of knowledge,” Contemporary Oncology/Współczesna Onkologia, vol. 2015, no. 1, pp. 68–77, 2015.
  49. N. E. Allen, C. Sudlow, T. Peakman, R. Collins, and U. biobank, “Uk biobank data: come and get it,” 2014.
  50. C. R. Jack Jr, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, B. Borowski, P. J. Britson, J. L. Whitwell, C. Ward, et al., “The alzheimer’s disease neuroimaging initiative (adni): Mri methods,” Journal of Magnetic Resonance Imaging: An Official Journal of the Int’l Society for Magnetic Resonance in Medicine, vol. 27, no. 4, pp. 685–691, 2008.
  51. A. García Seco de Herrera, R. Schaer, S. Bromuri, and H. Müller, “Overview of the ImageCLEF 2016 medical task,” in Working Notes of CLEF 2016 (Cross Language Evaluation Forum), September 2016.
  52. D. Demner-Fushman, S. Antani, M. Simpson, and G. R. Thoma, “Design and development of a multimodal biomedical information retrieval system,” Journal of Computing Science and Engineering, vol. 6, no. 2, pp. 168–177, 2012.
  53. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000 (June 13). Circulation Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218; doi: 10.1161/01.CIR.101.23.e215.
  54. T. Feng, B. M. Booth, B. Baldwin-Rodríguez, F. Osorno, and S. Narayanan, “A multimodal analysis of physical activity, sleep, and work shift in nurses with wearable sensor data,” Scientific reports, vol. 11, no. 1, p. 8693, 2021.
  55. S. Zeadally and O. Bello, “Harnessing the power of internet of things based connectivity to improve healthcare,” Internet of Things, vol. 14, p. 100074, 2021.
  56. K. Woodward, E. Kanjo, D. J. Brown, T. M. McGinnity, B. Inkster, D. J. Macintyre, and A. Tsanas, “Beyond mobile apps: a survey of technologies for mental well-being,” IEEE Transactions on Affective Computing, vol. 13, no. 3, pp. 1216–1235, 2020.
  57. S. Soklaridis, E. Lin, Y. Lalani, T. Rodak, and S. Sockalingam, “Mental health interventions and supports during covid-19 and other medical pandemics: A rapid systematic review of the evidence,” General hospital psychiatry, vol. 66, pp. 133–146, 2020.
  58. P. Bhowal, S. Sen, J. D. Velasquez, and R. Sarkar, “Fuzzy ensemble of deep learning models using choquet fuzzy integral, coalition game and information theory for breast cancer histology classification,” Expert Systems with Applications, vol. 190, p. 116167, 2022.
  59. A. Albahri, A. M. Duhaim, M. A. Fadhel, A. Alnoor, N. S. Baqer, L. Alzubaidi, O. Albahri, A. Alamoodi, J. Bai, A. Salhi, et al., “A systematic review of trustworthy and explainable artificial intelligence in healthcare: assessment of quality, bias risk, and data fusion,” Information Fusion, 2023.
  60. S. M. Alghowinem, T. Gedeon, R. Goecke, J. Cohn, and G. Parker, “Interpretation of depression detection models via feature selection methods,” IEEE transactions on affective computing, 2020.
  61. J. Zhang, Z. Yin, P. Chen, and S. Nichele, “Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review,” Information Fusion, vol. 59, pp. 103–126, 2020.
  62. T. Zhang and M. Shi, “Multi-modal neuroimaging feature fusion for diagnosis of alzheimer disease,” Journal of Neuroscience Methods, vol. 341, p. 108795, 2020.
  63. T. Zhou, M. Liu, K.-H. Thung, and D. Shen, “Latent representation learning for alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging and genetic data,” IEEE transactions on medical imaging, vol. 38, no. 10, pp. 2411–2422, 2019.
  64. D. Kim, Y.-H. Tsai, B. Zhuang, X. Yu, S. Sclaroff, K. Saenko, and M. Chandraker, “Learning cross-modal contrastive features for video domain adaptation,” in Proceedings of the IEEE/CVF Int’l Conf. on Computer Vision, pp. 13618–13627, 2021.
  65. T. Hoang, T.-T. Do, T. V. Nguyen, and N.-M. Cheung, “Multimodal mutual information maximization: A novel approach for unsupervised deep cross-modal hashing,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  66. S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu, Y. An, H. Zhao, X. Miao, R. Liu, and G. Fortino, “Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges,” Information Fusion, vol. 80, pp. 241–265, 2022.
  67. M. Abdel-Basset, D. El-Shahat, I. El-Henawy, V. H. C. De Albuquerque, and S. Mirjalili, “A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection,” Expert Systems with Applications, vol. 139, p. 112824, 2020.
  68. J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, “Evaluating the quality of machine learning explanations: A survey on methods and metrics,” Electronics, vol. 10, no. 5, p. 593, 2021.
  69. X. Hao, Y. Bao, Y. Guo, M. Yu, D. Zhang, S. L. Risacher, A. J. Saykin, X. Yao, L. Shen, A. D. N. Initiative, et al., “Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of alzheimers disease,” Medical image analysis, vol. 60, p. 101625, 2020.
  70. G. Yang, Q. Ye, and J. Xia, “Unbox the black-box for the medical explainable ai via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond,” Information Fusion, vol. 77, pp. 29–52, 2022.
  71. Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, “A survey on neural network interpretability,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 5, no. 5, pp. 726–742, 2021.
  72. G. Muhammad, F. Alshehri, F. Karray, A. El Saddik, M. Alsulaiman, and T. H. Falk, “A comprehensive survey on multimodal medical signals fusion for smart healthcare systems,” Information Fusion, vol. 76, pp. 355–375, 2021.
  73. M. Hussain, F. A. Satti, S. I. Ali, J. Hussain, T. Ali, H.-S. Kim, K.-H. Yoon, T. Chung, and S. Lee, “Intelligent knowledge consolidation: from data to wisdom,” Knowledge-Based Systems, vol. 234, p. 107578, 2021.
  74. T. Chen, C. Shang, P. Su, E. Keravnou-Papailiou, Y. Zhao, G. Antoniou, and Q. Shen, “A decision tree-initialised neuro-fuzzy approach for clinical decision support,” Artificial Intelligence in Medicine, vol. 111, p. 101986, 2021.
  75. T. K. Mohd, N. Nguyen, and A. Y. Javaid, “Multi-modal data fusion in enhancing human-machine interaction for robotic applications: A survey,” arXiv preprint arXiv:2202.07732, 2022.
  76. R. Yan, F. Zhang, X. Rao, Z. Lv, J. Li, L. Zhang, S. Liang, Y. Li, F. Ren, C. Zheng, et al., “Richer fusion network for breast cancer classification based on multimodal data,” BMC Medical Informatics and Decision Making, vol. 21, no. 1, pp. 1–15, 2021.
  77. A. Amirkhani, E. I. Papageorgiou, M. R. Mosavi, and K. Mohammadi, “A novel medical decision support system based on fuzzy cognitive maps enhanced by intuitive and learning capabilities for modeling uncertainty,” Applied Mathematics and Computation, vol. 337, pp. 562–582, 2018.
  78. A. Geramian, A. Abraham, and M. Ahmadi Nozari, “Fuzzy logic-based fmea robust design: a quantitative approach for robustness against groupthink in group/team decision-making,” Int’l Journal of Production Research, vol. 57, no. 5, pp. 1331–1344, 2019.
  79. A. Alharbi, A. Poujade, K. Malandrakis, I. Petrunin, D. Panagiotakopoulos, and A. Tsourdos, “Rule-based conflict management for unmanned traffic management scenarios,” in 2020 AIAA/IEEE 39th Digital Avionics Systems Conf. (DASC), pp. 1–10, IEEE, 2020.
  80. K. Bahani, M. Moujabbir, and M. Ramdani, “An accurate fuzzy rule-based classification systems for heart disease diagnosis,” Scientific African, vol. 14, p. e01019, 2021.
  81. A. M. Antoniadi, Y. Du, Y. Guendouz, L. Wei, C. Mazo, B. A. Becker, and C. Mooney, “Current challenges and future opportunities for xai in machine learning-based clinical decision support systems: a systematic review,” Applied Sciences, vol. 11, no. 11, p. 5088, 2021.
  82. W.-T. Wang and S.-Y. Wu, “Knowledge management based on information technology in response to covid-19 crisis,” Knowledge management research & practice, vol. 19, no. 4, pp. 468–474, 2021.
  83. L. Rundo, R. Pirrone, S. Vitabile, E. Sala, and O. Gambino, “Recent advances of hci in decision-making tasks for optimized clinical workflows and precision medicine,” Journal of biomedical informatics, vol. 108, p. 103479, 2020.
  84. S. El-Sappagh, F. Ali, T. Abuhmed, J. Singh, and J. M. Alonso, “Automatic detection of alzheimer’s disease progression: An efficient information fusion approach with heterogeneous ensemble classifiers,” Neurocomputing, vol. 512, pp. 203–224, 2022.
  85. K. Srinivasan, K. Raman, J. Chen, M. Bendersky, and M. Najork, “Wit: Wikipedia-based image text dataset for multimodal multilingual machine learning,” in Proceedings of the 44th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 2443–2449, 2021.
  86. M. Yan, Z. Deng, B. He, C. Zou, J. Wu, and Z. Zhu, “Emotion classification with multichannel physiological signals using hybrid feature and adaptive decision fusion,” Biomedical Signal Processing and Control, vol. 71, p. 103235, 2022.
  87. A. de Souza Brito, M. B. Vieira, S. M. Villela, H. Tacon, H. de Lima Chaves, H. de Almeida Maia, D. T. Concha, and H. Pedrini, “Weighted voting of multi-stream convolutional neural networks for video-based action recognition using optical flow rhythms,” Journal of Visual Communication and Image Representation, vol. 77, p. 103112, 2021.
  88. J. Gaebel, H.-G. Wu, A. Oeser, M. A. Cypko, M. Stoehr, A. Dietz, T. Neumuth, S. Franke, and S. Oeltze-Jafra, “Modeling and processing up-to-dateness of patient information in probabilistic therapy decision support,” Artificial Intelligence in Medicine, vol. 104, p. 101842, 2020.
  89. J. Chen and Y. Liu, “Multimodality data fusion for probabilistic strength estimation of aging materials using bayesian networks,” in AIAA Scitech 2020 Forum, p. 1653, 2020.
  90. P. Cao, X. Liu, J. Yang, D. Zhao, M. Huang, and O. Zaiane, “l2, 1- l1 regularized nonlinear multi-task representation learning based cognitive performance prediction of alzheimers disease,” Pattern Recognition, vol. 79, pp. 195–215, 2018.
  91. S. Sharma and P. K. Mandal, “A comprehensive report on machine learning-based early detection of alzheimer’s disease using multi-modal neuroimaging data,” ACM Computing Surveys (CSUR), vol. 55, no. 2, pp. 1–44, 2022.
  92. K. M. M. Lopez, M. S. A. Magboo, A. Tallón-Ballesteros, and C. Chen, “A clinical decision support tool to detect invasive ductal carcinoma in histopathological images using support vector machines, naïve-bayes, and k-nearest neighbor classifiers.,” in MLIS, pp. 46–53, 2020.
  93. Y. Liu, Z. Gu, T. H. Ko, and J. Liu, “Identifying key opinion leaders in social media via modality-consistent harmonized discriminant embedding,” IEEE Transactions on Cybernetics, vol. 50, no. 2, pp. 717–728, 2018.
  94. C. Zhang, Z. Yang, X. He, and L. Deng, “Multimodal intelligence: Representation learning, information fusion, and applications,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 3, pp. 478–493, 2020.
  95. F. Anowar, S. Sadaoui, and B. Selim, “Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne),” Computer Science Review, vol. 40, p. 100378, 2021.
  96. S. Zheng, Z. Zhu, Z. Liu, Z. Guo, Y. Liu, Y. Yang, and Y. Zhao, “Multi-modal graph learning for disease prediction,” IEEE Transactions on Medical Imaging, vol. 41, no. 9, pp. 2207–2216, 2022.
  97. S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for skeleton-based action recognition,” in Proceedings of the AAAI Conf. on artificial intelligence, vol. 32, 2018.
  98. M. Hügle, G. Kalweit, T. Hügle, and J. Boedecker, “A dynamic deep neural network for multimodal clinical data analysis,” Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability, pp. 79–92, 2021.
  99. A. Elboushaki, R. Hannane, K. Afdel, and L. Koutti, “Multid-cnn: A multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in rgb-d image sequences,” Expert Systems with Applications, vol. 139, p. 112829, 2020.
  100. K. M. Rashid and J. Louis, “Times-series data augmentation and deep learning for construction equipment activity recognition,” Advanced Engineering Informatics, vol. 42, p. 100944, 2019.
  101. N. Bahador, J. Jokelainen, S. Mustola, and J. Kortelainen, “Multimodal spatio-temporal-spectral fusion for deep learning applications in physiological time series processing: A case study in monitoring the depth of anesthesia,” Information Fusion, vol. 73, pp. 125–143, 2021.
  102. X. Wang, G. Chen, G. Qian, P. Gao, X.-Y. Wei, Y. Wang, Y. Tian, and W. Gao, “Large-scale multi-modal pre-trained models: A comprehensive survey,” arXiv preprint arXiv:2302.10035, 2023.
  103. G. Ayana, K. Dese, and S.-w. Choe, “Transfer learning in breast cancer diagnoses via ultrasound imaging,” Cancers, vol. 13, no. 4, p. 738, 2021.
  104. A. de Santana Correia and E. L. Colombini, “Attention, please! a survey of neural attention models in deep learning,” Artificial Intelligence Review, vol. 55, no. 8, pp. 6037–6124, 2022.
  105. Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of deep learning,” Neurocomputing, vol. 452, pp. 48–62, 2021.
  106. Y. Shi, B. Paige, P. Torr, et al., “Variational mixture-of-experts autoencoders for multi-modal deep generative models,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  107. C. Du, C. Du, and H. He, “Multimodal deep generative adversarial models for scalable doubly semi-supervised learning,” Information Fusion, vol. 68, pp. 118–130, 2021.
  108. H. R. V. Joze, A. Shaban, M. L. Iuzzolino, and K. Koishida, “Mmtm: Multimodal transfer module for cnn fusion,” in Proceedings of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 13289–13299, 2020.
  109. Y. Zhang, D. Sidibé, O. Morel, and F. Mériaudeau, “Deep multimodal fusion for semantic image segmentation: A survey,” Image and Vision Computing, vol. 105, p. 104042, 2021.
  110. R. Carvalho, A. C. Morgado, C. Andrade, T. Nedelcu, A. Carreiro, and M. J. M. Vasconcelos, “Integrating domain knowledge into deep learning for skin lesion risk prioritization to assist teledermatology referral,” Diagnostics, vol. 12, no. 1, p. 36, 2021.
  111. D. Jin, E. Sergeeva, W.-H. Weng, G. Chauhan, and P. Szolovits, “Explainable deep learning in healthcare: A methodological survey from an attribution view,” WIREs Mechanisms of Disease, vol. 14, no. 3, p. e1548, 2022.
  112. R. Sevastjanova, F. Beck, B. Ell, C. Turkay, R. Henkin, M. Butt, D. A. Keim, and M. El-Assady, “Going beyond visualization: Verbalization as complementary medium to explain machine learning models,” in Workshop on Visualization for AI Explainability at IEEE VIS, 2018.
  113. K. M. Boehm, P. Khosravi, R. Vanguri, J. Gao, and S. P. Shah, “Harnessing multimodal data integration to advance precision oncology,” Nature Reviews Cancer, vol. 22, no. 2, pp. 114–126, 2022.
  114. T. Shaik, X. Tao, Y. Li, C. Dann, J. McDonald, P. Redmond, and L. Galligan, “A review of the trends and challenges in adopting natural language processing methods for education feedback analysis,” IEEE Access, 2022.
  115. Z. Zeng, Y. Deng, X. Li, T. Naumann, and Y. Luo, “Natural language processing for ehr-based computational phenotyping,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 16, no. 1, pp. 139–153, 2018.
  116. P. Bhatia, B. Celikkaya, M. Khalilia, and S. Senthivel, “Comprehend medical: a named entity recognition and relationship extraction web service,” in 2019 18th IEEE Int’l Conf. On Machine Learning And Applications (ICMLA), pp. 1844–1851, IEEE, 2019.
  117. D. Demner-Fushman, N. Elhadad, and C. Friedman, “Natural language processing for health-related texts,” in Biomedical Informatics: Computer Applications in Health Care and Biomedicine, pp. 241–272, Springer, 2021.
  118. E. Petrova, P. Pauwels, K. Svidt, and R. L. Jensen, “Towards data-driven sustainable design: decision support based on knowledge discovery in disparate building data,” Architectural Engineering and Design Management, vol. 15, no. 5, pp. 334–356, 2019.
  119. T. Pham, X. Tao, J. Zhang, and J. Yong, “Constructing a knowledge-based heterogeneous information graph for medical health status classification,” Health information science and systems, vol. 8, pp. 1–14, 2020.
  120. M. Tang, P. Gandhi, M. A. Kabir, C. Zou, J. Blakey, and X. Luo, “Progress notes classification and keyword extraction using attention-based deep learning models with bert,” arXiv preprint arXiv:1910.05786, 2019.
  121. N. Chintalapudi, G. Battineni, M. Di Canio, G. G. Sagaro, and F. Amenta, “Text mining with sentiment analysis on seafarers’ medical documents,” Int’l Journal of Information Management Data Insights, vol. 1, no. 1, p. 100005, 2021.
  122. S. Bozkurt, E. Alkim, I. Banerjee, and D. L. Rubin, “Automated detection of measurements and their descriptors in radiology reports using a hybrid natural language processing algorithm,” Journal of digital imaging, vol. 32, pp. 544–553, 2019.
  123. X. Pei, K. Zuo, Y. Li, and Z. Pang, “A review of the application of multi-modal deep learning in medicine: Bibliometrics and future directions,” Int’l Journal of Computational Intelligence Systems, vol. 16, no. 1, pp. 1–20, 2023.
  124. L. Wang, M. Rastegar-Mojarad, Z. Ji, S. Liu, K. Liu, S. Moon, F. Shen, Y. Wang, L. Yao, J. M. Davis III, et al., “Detecting pharmacovigilance signals combining electronic medical records with spontaneous reports: a case study of conventional disease-modifying antirheumatic drugs for rheumatoid arthritis,” Frontiers in pharmacology, vol. 9, p. 875, 2018.
  125. M. F. Guiñazú, V. Cortés, C. F. Ibáñez, and J. D. Velásquez, “Employing online social networks in precision-medicine approach using information fusion predictive model to improve substance use surveillance: A lesson from twitter and marijuana consumption,” Information Fusion, vol. 55, pp. 150–163, 2020.
  126. A. Choudhury, O. Asan, et al., “Role of artificial intelligence in patient safety outcomes: systematic literature review,” JMIR medical informatics, vol. 8, no. 7, p. e18599, 2020.
  127. A. Le Glaz, Y. Haralambous, D.-H. Kim-Dufor, P. Lenca, R. Billot, T. C. Ryan, J. Marsh, J. Devylder, M. Walter, S. Berrouiguet, et al., “Machine learning and natural language processing in mental health: systematic review,” Journal of Medical Internet Research, vol. 23, no. 5, p. e15708, 2021.
  128. J. Lipkova, R. J. Chen, B. Chen, M. Y. Lu, M. Barbieri, D. Shao, A. J. Vaidya, C. Chen, L. Zhuang, D. F. Williamson, et al., “Artificial intelligence for multimodal data integration in oncology,” Cancer Cell, vol. 40, no. 10, pp. 1095–1110, 2022.
  129. B. N. Hiremath and M. M. Patil, “Enhancing optimized personalized therapy in clinical decision support system using natural language processing,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 6, pp. 2840–2848, 2022.
  130. I. Spasic, G. Nenadic, et al., “Clinical text data in machine learning: systematic review,” JMIR medical informatics, vol. 8, no. 3, p. e17984, 2020.
  131. I. Perez-Pozuelo, B. Zhai, J. Palotti, R. Mall, M. Aupetit, J. M. Garcia-Gomez, S. Taheri, Y. Guan, and L. Fernandez-Luque, “The future of sleep health: a data-driven revolution in sleep science and medicine,” NPJ digital medicine, vol. 3, no. 1, p. 42, 2020.
  132. J. Sun, H. Shi, J. Zhu, B. Song, Y. Tao, and S. Tan, “Self-attention-based multi-block regression fusion neural network for quality-related process monitoring,” Journal of the Taiwan Institute of Chemical Engineers, vol. 133, p. 104140, 2022.
  133. F. A. Reegu, H. Abas, Y. Gulzar, Q. Xin, A. A. Alwan, A. Jabbari, R. G. Sonkamble, and R. A. Dziyauddin, “Blockchain-based framework for interoperable electronic health records for an improved healthcare system,” Sustainability, vol. 15, no. 8, p. 6337, 2023.
  134. C. Lyketsos, S. Roberts, E. K. Swift, A. Quina, G. Moon, I. Kremer, P. Tariot, H. Fillit, D. Bovenkamp, P. Zandi, et al., “Standardizing electronic health record data on ad/adrd to accelerate health equity in prevention, detection, and treatment,” The journal of prevention of Alzheimers disease, vol. 9, no. 3, pp. 556–560, 2022.
  135. G. Diraco, G. Rescio, P. Siciliano, and A. Leone, “Review on human action recognition in smart living: Multimodality, real-time processing, interoperability, resource-constrained processing, and sensing technology,” 2023.
  136. C. Mwangi, C. Mukanya, and C. Maghanga, “Assessing the interoperability of mlab and ushauri mhealth systems to enhance care for hiv/aids patients in kenya,” Journal of Intellectual Property and Information Technology Law (JIPIT), vol. 2, no. 1, pp. 83–116, 2022.
  137. M. Kor, I. Yitmen, and S. Alizadehsalehi, “An investigation for integration of deep learning and digital twins towards construction 4.0,” Smart and Sustainable Built Environment, vol. 12, no. 3, pp. 461–487, 2023.
  138. X. Tao and J. D. Velásquez, “Multi-source information fusion for smart health with artificial intelligence,” Information Fusion, vol. 83–84, pp. 93–95, 2022.
  139. M. Paul, L. Maglaras, M. A. Ferrag, and I. AlMomani, “Digitization of healthcare sector: A study on privacy and security concerns,” ICT Express, 2023.
  140. I. Yasser, A. T. Khalil, M. A. Mohamed, A. S. Samra, and F. Khalifa, “A robust chaos-based technique for medical image encryption,” IEEE Access, vol. 10, pp. 244–257, 2021.
  141. P. B. Regade, A. A. Patil, S. S. Koli, R. B. Gokavi, and M. Bhandigare, “Survey on secure file storage on cloud using hybrid cryptography,” Int’l Research Journal of Modernization in Engineering Technology and Science, vol. 4, no. 06, 2022.
  142. Y. Al-Issa, M. A. Ottom, and A. Tamrawi, “ehealth cloud security challenges: a survey,” Journal of healthcare engineering, vol. 2019, 2019.
  143. M. Mohammed, S. Desyansah, S. Al-Zubaidi, and E. Yusuf, “An internet of things-based smart homes and healthcare monitoring and management system,” in Journal of Physics: Conf. Series, vol. 1450, p. 012079, IOP Publishing, 2020.
  144. J. J. Hathaliya, S. Tanwar, and P. Sharma, “Adversarial learning techniques for security and privacy preservation: A comprehensive review,” Security and Privacy, vol. 5, no. 3, p. e209, 2022.
  145. N. N. Neto, S. Madnick, A. M. G. de Paula, and N. Malara Borges, “A case study of the capital one data breach: Why didn’t compliance requirements help prevent it?,” Journal of Information System Security, vol. 17, no. 1, 2021.
  146. R. Kumar and R. Goyal, “On cloud security requirements, threats, vulnerabilities and countermeasures: A survey,” Computer Science Review, vol. 33, pp. 1–48, 2019.
  147. V. R. Kebande, N. M. Karie, and R. A. Ikuesan, “Real-time monitoring as a supplementary security component of vigilantism in modern network environments,” Int’l Journal of Information Technology, vol. 13, pp. 5–17, 2021.
  148. R. Bokade, A. Navato, R. Ouyang, X. Jin, C.-A. Chou, S. Ostadabbas, and A. V. Mueller, “A cross-disciplinary comparison of multimodal data fusion approaches and applications: Accelerating learning through trans-disciplinary information sharing,” Expert Systems with Applications, vol. 165, p. 113885, 2021.
  149. A. M. Flores, F. Demsas, N. J. Leeper, and E. G. Ross, “Leveraging machine learning and artificial intelligence to improve peripheral artery disease detection, treatment, and outcomes,” Circulation research, vol. 128, no. 12, pp. 1833–1850, 2021.
  150. M. Swathy and K. Saruladha, “A comparative study of classification and prediction of cardio-vascular diseases (cvd) using machine learning and deep learning techniques,” ICT Express, vol. 8, no. 1, pp. 109–116, 2022.
  151. I. Banerjee, Y. Ling, M. C. Chen, S. A. Hasan, C. P. Langlotz, N. Moradzadeh, B. Chapman, T. Amrhein, D. Mong, D. L. Rubin, et al., “Comparative effectiveness of convolutional neural network (cnn) and recurrent neural network (rnn) architectures for radiology text report classification,” Artificial intelligence in medicine, vol. 97, pp. 79–88, 2019.
  152. A. Coronato, M. Naeem, G. De Pietro, and G. Paragliola, “Reinforcement learning for intelligent healthcare applications: A survey,” Artificial Intelligence in Medicine, vol. 109, p. 101964, 2020.
  153. D. Wang, J. D. Weisz, M. Muller, P. Ram, W. Geyer, C. Dugan, Y. Tausczik, H. Samulowitz, and A. Gray, “Human-ai collaboration in data science: Exploring data scientists’ perceptions of automated ai,” Proceedings of the ACM on human-computer interaction, vol. 3, no. CSCW, pp. 1–24, 2019.
  154. I. H. Sarker, “Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective,” SN Computer Science, vol. 2, no. 5, p. 377, 2021.
  155. S. Steyaert, M. Pizurica, D. Nagaraj, P. Khandelwal, T. Hernandez-Boussard, A. J. Gentles, and O. Gevaert, “Multimodal data fusion for cancer biomarker discovery with deep learning,” Nature Machine Intelligence, pp. 1–12, 2023.
  156. D. Wang, L. Wang, Z. Zhang, D. Wang, H. Zhu, Y. Gao, X. Fan, and F. Tian, ““brilliant ai doctor” in rural clinics: Challenges in ai-powered clinical decision support system deployment,” in Proceedings of the 2021 CHI Conf. on human factors in computing systems, pp. 1–18, 2021.
  157. E. Nazari, M. H. Shahriari, and H. Tabesh, “Bigdata analysis in healthcare: apache hadoop, apache spark and apache flink,” Frontiers in Health Informatics, vol. 8, no. 1, p. 14, 2019.
  158. A. Kaur, P. Singh, and A. Nayyar, “Fog computing: Building a road to iot with fog analytics,” Fog Data Analytics for IoT Applications: Next Generation Process Model with State of the Art Technologies, pp. 59–78, 2020.
  159. R. Dwivedi, D. Mehrotra, and S. Chandra, “Potential of internet of medical things (iomt) applications in building a smart healthcare system: A systematic review,” Journal of oral biology and craniofacial research, vol. 12, no. 2, pp. 302–318, 2022.
  160. Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, and A. Nee, “Enabling technologies and tools for digital twin,” Journal of Manufacturing Systems, vol. 58, pp. 3–21, 2021.
  161. P. K. R. Maddikunta, Q.-V. Pham, B. Prabadevi, N. Deepa, K. Dev, T. R. Gadekallu, R. Ruby, and M. Liyanage, “Industry 5.0: A survey on enabling technologies and potential applications,” Journal of Industrial Information Integration, vol. 26, p. 100257, 2022.
  162. A. Vakil, J. Liu, P. Zulch, E. Blasch, R. Ewing, and J. Li, “A survey of multimodal sensor fusion for passive rf and eo information integration,” IEEE Aerospace and Electronic Systems Magazine, vol. 36, no. 7, pp. 44–61, 2021.
  163. L. You, M. Danaf, F. Zhao, J. Guan, C. L. Azevedo, B. Atasoy, and M. Ben-Akiva, “A federated platform enabling a systematic collaboration among devices, data and functions for smart mobility,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 4060–4074, 2023.
  164. R. Dabliz, S. K. Poon, A. Ritchie, R. Burke, and J. Penm, “Usability evaluation of an integrated electronic medication management system implemented in an oncology setting using the unified theory of acceptance and use of technology,” BMC Medical Informatics and Decision Making, vol. 21, no. 1, pp. 1–11, 2021.
  165. B. N. Limketkai, K. Mauldin, N. Manitius, L. Jalilian, and B. R. Salonen, “The age of artificial intelligence: use of digital technology in clinical nutrition,” Current surgery reports, vol. 9, no. 7, p. 20, 2021.
  166. X. Chen, H. Xie, Z. Li, G. Cheng, M. Leng, and F. L. Wang, “Information fusion and artificial intelligence for smart healthcare: a bibliometric study,” Information Processing & Management, vol. 60, no. 1, p. 103113, 2023.
  167. V. M. O’Hara, S. V. Johnston, and N. T. Browne, “The paediatric weight management office visit via telemedicine: pre-to post-covid-19 pandemic,” Pediatric obesity, vol. 15, no. 8, p. e12694, 2020.
  168. A. Holzinger, M. Dehmer, F. Emmert-Streib, R. Cucchiara, I. Augenstein, J. Del Ser, W. Samek, I. Jurisica, and N. Díaz-Rodríguez, “Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence,” Information Fusion, vol. 79, pp. 263–278, 2022.
  169. L. Baum, M. Johns, M. Poikela, R. Möller, B. Ananthasubramaniam, and F. Prasser, “Data integration and analysis for circadian medicine,” Acta Physiologica, vol. 237, no. 4, p. e13951, 2023.
  170. S. M. van Rooden, O. Aspevall, E. Carrara, S. Gubbels, A. Johansson, J.-C. Lucet, S. Mookerjee, Z. R. Palacios-Baena, E. Presterl, E. Tacconelli, et al., “Governance aspects of large-scale implementation of automated surveillance of healthcare-associated infections,” Clinical Microbiology and Infection, vol. 27, pp. S20–S28, 2021.
  171. C. Thapa and S. Camtepe, “Precision health data: Requirements, challenges and existing techniques for data security and privacy,” Computers in biology and medicine, vol. 129, p. 104130, 2021.
  172. N. Gaw, S. Yousefi, and M. R. Gahrooei, “Multimodal data fusion for systems improvement: A review,” IISE Transactions, vol. 54, no. 11, pp. 1098–1116, 2022.
  173. J. Mökander, J. Morley, M. Taddeo, and L. Floridi, “Ethics-based auditing of automated decision-making systems: Nature, scope, and limitations,” Science and Engineering Ethics, vol. 27, no. 4, p. 44, 2021.
  174. L. Belgodère, D. P. Bertrand, M. C. Jaulent, V. Rabeharisoa, W. Janssens, V. Rollason, J. Barbot, J. P. Vernant, W. O. Gonin, P. Maison, et al., “Patient and public involvement in the benefit–risk assessment and decision concerning health products: position of the scientific advisory board of the french national agency for medicines and health products safety (ansm),” BMJ Global Health, vol. 8, no. 5, p. e011966, 2023.
  175. S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M. Alonso-Moral, R. Confalonieri, R. Guidotti, J. Del Ser, N. Díaz-Rodríguez, and F. Herrera, “Explainable artificial intelligence (xai): What we know and what is left to attain trustworthy artificial intelligence,” Information Fusion, p. 101805, 2023.
  176. N. Rostamzadeh, S. S. Abdullah, and K. Sedig, “Visual analytics for electronic health records: a review,” in Informatics, vol. 8, p. 12, MDPI, 2021.
  177. T. Höllt, A. Vilanova, N. Pezzotti, B. P. Lelieveldt, and H. Hauser, “Focus+ context exploration of hierarchical embeddings,” in Computer Graphics Forum, vol. 38, pp. 569–579, Wiley Online Library, 2019.
  178. A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, et al., “Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai,” Information fusion, vol. 58, pp. 82–115, 2020.
  179. A. Holzinger, M. Dehmer, F. Emmert-Streib, R. Cucchiara, I. Augenstein, J. D. Ser, W. Samek, I. Jurisica, and N. Díaz-Rodríguez, “Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence,” Information Fusion, vol. 79, pp. 263–278, Mar. 2022.
  180. Y. Mao, D. Wang, M. Muller, K. R. Varshney, I. Baldini, C. Dugan, and A. Mojsilović, “How data ScientistsWork together with domain experts in scientific collaborations,” Proceedings of the ACM on Human-Computer Interaction, vol. 3, pp. 1–23, Dec. 2019.
  181. L. Müller, A. Srinivasan, S. R. Abeles, A. Rajagopal, F. J. Torriani, and E. Aronoff-Spencer, “A risk-based clinical decision support system for patient-specific antimicrobial therapy (iBiogram): Design and retrospective analysis,” Journal of Medical Internet Research, vol. 23, p. e23571, Dec. 2021.
  182. T. Pham, X. Tao, J. Zhang, J. Yong, Y. Li, and H. Xie, “Graph-based multi-label disease prediction model learning from medical data and domain knowledge,” Knowledge-based systems, vol. 235, p. 107662, 2022.
  183. G. Collatuzzo and P. Boffetta, “Application of p4 (predictive, preventive, personalized, participatory) approach to occupational medicine,” La Medicina del Lavoro, vol. 113, no. 1, 2022.
  184. R. B. Ruiz and J. D. Velásquez, “Artificial intelligence for the future of medicine,” in Artificial Intelligence and Machine Learning for Healthcare: Vol. 2: Emerging Methodologies and Trends, pp. 1–28, Springer, 2022.
  185. A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean, “A guide to deep learning in healthcare,” Nature medicine, vol. 25, no. 1, pp. 24–29, 2019.
  186. M. A. Myszczynska, P. N. Ojamies, A. M. Lacoste, D. Neil, A. Saffari, R. Mead, G. M. Hautbergue, J. D. Holbrook, and L. Ferraiuolo, “Applications of machine learning to diagnosis and treatment of neurodegenerative diseases,” Nature Reviews Neurology, vol. 16, no. 8, pp. 440–456, 2020.
  187. Y.-D. Zhang, Z. Dong, S.-H. Wang, X. Yu, X. Yao, Q. Zhou, H. Hu, M. Li, C. Jiménez-Mesa, J. Ramirez, et al., “Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation,” Information Fusion, vol. 64, pp. 149–187, 2020.
  188. X.-a. Bi, X. Hu, Y. Xie, and H. Wu, “A novel cernne approach for predicting parkinson’s disease-associated genes and brain regions based on multimodal imaging genetics data,” Medical Image Analysis, vol. 67, p. 101830, 2021.
  189. L. A. Vale-Silva and K. Rohr, “Long-term cancer survival prediction using multimodal deep learning,” Scientific Reports, vol. 11, no. 1, p. 13505, 2021.
  190. R. Nabbout and M. Kuchenbuch, “Impact of predictive, preventive and precision medicine strategies in epilepsy,” Nature Reviews Neurology, vol. 16, no. 12, pp. 674–688, 2020.
  191. T. Shaik, X. Tao, N. Higgins, H. Xie, R. Gururajan, and X. Zhou, “Ai enabled rpm for mental health facility,” in Proceedings of the 1st ACM Workshop on Mobile and Wireless Sensing for Smart Healthcare, pp. 26–32, 2022.
  192. M. C. Liefaard, E. H. Lips, J. Wesseling, N. M. Hylton, B. Lou, T. Mansi, and L. Pusztai, “The way of the future: personalizing treatment plans through technology,” American Society of Clinical Oncology Educational Book, vol. 41, pp. 12–23, 2021.
  193. T. Shaik, X. Tao, N. Higgins, R. Gururajan, Y. Li, X. Zhou, and U. R. Acharya, “Fedstack: Personalized activity monitoring using stacked federated learning,” Knowledge-Based Systems, vol. 257, p. 109929, 2022.
  194. A. A. T. Naqvi, K. Fatima, T. Mohammad, U. Fatima, I. K. Singh, A. Singh, S. M. Atif, G. Hariprasad, G. M. Hasan, and M. I. Hassan, “Insights into sars-cov-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach,” Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1866, no. 10, p. 165878, 2020.
  195. D. Horgan, T. Čufer, F. Gatto, I. Lugowska, D. Verbanac, Â. Carvalho, J. A. Lal, M. Kozaric, S. Toomey, H. Y. Ivanov, et al., “Accelerating the development and validation of liquid biopsy for early cancer screening and treatment tailoring,” in Healthcare, vol. 10, p. 1714, MDPI, 2022.
  196. H. Cai, Z. Qu, Z. Li, Y. Zhang, X. Hu, and B. Hu, “Feature-level fusion approaches based on multimodal eeg data for depression recognition,” Information Fusion, vol. 59, pp. 127–138, 2020.
  197. J. Mateo, L. Steuten, P. Aftimos, F. André, M. Davies, E. Garralda, J. Geissler, D. Husereau, I. Martinez-Lopez, N. Normanno, et al., “Delivering precision oncology to patients with cancer,” Nature Medicine, vol. 28, no. 4, pp. 658–665, 2022.
  198. G. Aceto, V. Persico, and A. Pescapé, “Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0,” Journal of Industrial Information Integration, vol. 18, p. 100129, 2020.
  199. K. M. Boehm, E. A. Aherne, L. Ellenson, I. Nikolovski, M. Alghamdi, I. Vázquez-García, D. Zamarin, K. Long Roche, Y. Liu, D. Patel, et al., “Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer,” Nature cancer, vol. 3, no. 6, pp. 723–733, 2022.
  200. P. Carayon, A. Wooldridge, P. Hoonakker, A. S. Hundt, and M. M. Kelly, “Seips 3.0: Human-centered design of the patient journey for patient safety,” Applied ergonomics, vol. 84, p. 103033, 2020.
  201. H. Dhayne, R. Haque, R. Kilany, and Y. Taher, “In search of big medical data integration solutions-a comprehensive survey,” IEEE Access, vol. 7, pp. 91265–91290, 2019.
  202. A. El Saddik, F. Laamarti, and M. Alja’Afreh, “The potential of digital twins,” IEEE Instrumentation & Measurement Magazine, vol. 24, no. 3, pp. 36–41, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Thanveer Shaik (14 papers)
  2. Xiaohui Tao (32 papers)
  3. Lin Li (329 papers)
  4. Haoran Xie (106 papers)
  5. Juan D. Velásquez (1 paper)
Citations (50)